Skip to main content

Zur Berechnung von Spektralfunktionen geeignete Lösungsmethoden der Boltzmann-Gleichung

  • Chapter
  • First Online:
Festkörperprobleme 12

Part of the book series: Advances in Solid State Physics ((ASSP,volume 12))

Abstract

The shape of well-resolved spectral lines for emission, absorption, and scattering phenomena in gases is studied. In section 1 the problem of calculating spectral functions within the framework of kinetic theory is formulated after some remarks on quantum mechanical operators and their nonequilibrium averages have first been made. Section 2 is devoted to a discussion of the relevant generalized Boltzmann equation (kinetic equation) which has to be solved in order to obtain the spectral function. In section 3, the case of high and medium densities is treated by application of the moment method. The resulting spectral function is given by a Lorentzian. Its half-width, in general, contains contributions directly as well as inversely proportional to the number density; the former accounts for collisional broadening, the latter for diffusional broadening. Section 4.1 deals with the opposite limiting case of low densities where the line shape is determined by a Doppler broadened Gaussian. In section 4.2 a criterium is given for the occurrence of a minimal line width (narrower than the Doppler width) at an intermediate density (Dicke effect). Section 5 is concerned with the calculation of spectral functions valid for all densities. In section 5.1 a model collision term with two relaxation frequencies is introduced. Some special choices made previously for these two model parameters are mentioned. Then, in section 5.2, a kind of a variational procedure is outlined which yields a model collision term which is a best approximation to the exact collision term. Furthermore, the relaxation frequencies—one of which depends on the frequency and the wavevector—are related to the exact collision term. In section 5.3, the desired spectral function is calculated from the kinetic equation with the approximate collision term. Finally, in section 6, it is indicated how “best” model collision terms with more than two relacation frequencies can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. L. Boltzmann, Wien. Ber 66, 275 (1872).

    Google Scholar 

  2. S. Chapman and S. T. Cowling, The mathematical theory of non-uniform gases, Cambridge University Press, 1939; J. O. Hirschfelder, C. F. Curtis and R. B. Bird, Molecular theory of gases and liquids, Wiley, New York 1954; H. Grad, in Handbuch d. Physik 12, ed. S. Flügge, Springer, Berlin 1958; L. Waldmann, in Handbuch d. Physik 12, ed. S. Flügge, Springer, Berlin 1958; J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford 1960.

    Google Scholar 

  3. I. L. Fabelinskii, Molecular scattering of light, Plenum Press, New York 1968.

    Google Scholar 

  4. L. van Hove, Phys. Rev. 95, 249 (1954).

    Article  MATH  ADS  Google Scholar 

  5. M. Nelkin and S. Yip, Phys. Fluids 9, 380 (1966).

    Article  ADS  Google Scholar 

  6. E. P. Gross, in Lectures in Theoretical Physics 9c (ed. W. E. Brittin e.a.), Gordon and Breach, New York 1967.

    Google Scholar 

  7. S. Hess, Z. Naturforsch. 24a, 1675 (1969).

    ADS  Google Scholar 

  8. L. Waldmann, Z. naturforsch. 12a, 660 (1957); 13a, 609 (1958); R. F. Snider, J. Chem. Phys. 32, 1051 (1960).

    ADS  Google Scholar 

  9. S. Hess, Physics Letters 29A, 108 (1969); Z. Naturforsch. 24a, 1852 (1969); 25a, 350 (1970); Springer Tracts in Mod. Phys. 54, 136 (1970); S. Hess and H. F. P. Knaap, Z. Naturforsch. 26a, 1639 (1971).

    ADS  Google Scholar 

  10. S. G. Rautian and I. I. Sobelmann, Soviet Physics-Uspekhi 9, 701 (1967).

    Article  ADS  Google Scholar 

  11. J. J. M. Beenakker, in: Festkörperprobleme VIII, ed. O. Madelung, Vieweg, Braunschweig, 1968; J. J. M. Beenakker and F. R. McCourt, Ann. Rev. Phys. Chem. 21, 47 (1970); J. S. Dahler and D. K. Hoffmann, in Transfer and storage of energy by molecules, vol. 3, ed. G. M. Burnett, Wiley, New York 1970.

    Google Scholar 

  12. F. R. McCourt, and R. F. Snider, J. Chem. Phys. 47, 4117 (1967); S. Hess and L. Waldmann, Z. Naturforsch. 25a, 1367 (1970); 26a, 1057 (1971).

    Article  ADS  Google Scholar 

  13. C. S. Wang Chang, G. E. Uhlenbeck and J. de Boer in: Studies in Statistical Mechanics II (eds. de Boer, and Uhlenbeck), North Holland, Amsterdam 1964.

    Google Scholar 

  14. L. Waldmann, in Statistical Mechanics of Equilibrium and Non-Equilibrium (ed. J. Meixner), North Holland, Amsterdam 1965.

    Google Scholar 

  15. S. Hess, Z. Naturforsch. 22a, 1871 (1967); A. Tip, Physica 52, 493 (1971); R. F. Snider and B. C. Sanctuary, J. Chem. Phys. 55, 1555 (1971).

    ADS  Google Scholar 

  16. S. Hess and L. Waldmann, Z. Naturforsch. 21a, 1529 (1966); H. H. Raum and W. E. Köhler, Z. Naturforsch. 25a, 1178 (1970).

    ADS  Google Scholar 

  17. A. G. St. Pierre, W. E. Köhler and S. Hess, Z. Naturforsch. 27a, 721 (1972).

    ADS  Google Scholar 

  18. V. G. Cooper, A. D. May, E. H. Hara and H. F. P. Knaap, Phys. Letters 27A, 52 (1968); R. A. J. Keijser, M. Jansen, V. G. Cooper and H. F. P. Knaap, Physica 51, 593 (1971).

    ADS  Google Scholar 

  19. V. G. Cooper, A. D. May, E. H. Hara and H. F. P. Knaap, Can. J. Phys. 46, 2019 (1968); B. K. Gupta, Dissertation, Universität Toronto, 1971; B. K. Gupta, S. Hess and A. D. May, Can. J. Phys. 1972 (im Druck).

    ADS  Google Scholar 

  20. R. H. Dicke, Phys. Rev. 89, 472 (1953).

    Article  ADS  Google Scholar 

  21. M. Nelkin and A. Ghatak, Phys. Rev. 135A, 4 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Voigt, Münch. Ber. 1912. S. 683.

    Google Scholar 

  23. S. Hess, Physica (im Druck).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. Madelung

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Friedr. Vieweg & Sohn GmbH

About this chapter

Cite this chapter

Hess, S. (1972). Zur Berechnung von Spektralfunktionen geeignete Lösungsmethoden der Boltzmann-Gleichung. In: Madelung, O. (eds) Festkörperprobleme 12. Advances in Solid State Physics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107715

Download citation

  • DOI: https://doi.org/10.1007/BFb0107715

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08018-1

  • Online ISBN: 978-3-540-75329-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics