Advertisement

Optical properties of GaN

Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 36)

Abstract

GaN is one of the most promising semiconductors for optoelectronics in the blue spectral region. The commercialization of bright blue and green light emitting diodes based on group-III nitrides is a milestone in the competition for blue light sources which are important for fabricating full-color displays. The recent first realization of an InGaN multi-quantum-well laser diode yields a great stride of progress in the development of ultraviolet optoelectronic devices. In spite of this recent success in device techniques, some of the basic electrical and optical properties of group-III nitrides are still unknown. Little information exists on compensation and conduction mechanisms in GaN. This is often a problem of the material quality and a lack of better understanding of the epitaxial growth techniques.

We will present time-integrated and time-resolved photoluminescence investigations from the band edge down to the near infrared spectral region to provide information about excitonic properties as well as the influence of point and extended defects in cubic and hexagonal GaN. Using calorimetric-absorption,-transmission and-reflection spectroscopy the excitonic transitions originating from the A-, B-, and C-valence bands are precisely determined and the crystal-field and spin-orbit-splitting energies are calculated. These splittings are strongly influenced by the lattice mismatch and the thermal expansion coefficients between the GaN epilayer and the substrate. The dynamical behavior of the free and bound excitons in GaN clearly gives evidence of nonradiative decay channels. Calorimetric spectroscopy yields typical quantum efficiencies of 25% for the free exciton and of 50% for the donor-bound exciton in undoped samples.

Spatially resolved Raman-scattering and photoluminescence experiments allow to analyze the crystal structure, layer orientation and strain contribution to the lattice properties. Epitaxial growth of GaN on GaAs shows a cubic phase purity up to 98%. Spatially resolved investigations demonstrate that the yellow luminescence in GaN with its maximum at 2.4 eV is strongly localized near the interface.

Photoluminescence and optical gain measurements of highly excited GaN are reported. The decay of biexcitons is observed for the first time in a III–V semiconductor. At higher temperatures inelastic scattering processes of excitons, phononassisted annihilation of excitons and free carriers dominate. Similar characteristics are observed in temperature-dependent gain measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    S. Nakamura, M. Senoh, N. Nawasa and S. Nagahama, Jpn. J. Appl. Phys. Lett. 34 (1995), L797CrossRefADSGoogle Scholar
  2. [2]
    S.N. Mohammad, Arnel A. Salvador, and Hadis Morkoc, Proc. of the IEEE, 83 (1995), 1306CrossRefGoogle Scholar
  3. [3]
    S. Nakamura, Ist. Phys. conf. Ser. No 142: Chapter 6, paper presented at Silicon Carbide and Related Materials 1995 Conf., Kyoto, Japan, 1996 ed. by S. Nakashima, H. Matsunami, S. Yoshida and H. Harima, IOP Publishing Ltd, p. 979Google Scholar
  4. [4]
    A. Ishibashi, Proc. International Symposium on Blue Laser and Light Emitting Diodes, Chiba University, Japan, March 1996, ed. A. Yoshikawa, K. Kihino, M. Kobayashi, T. Yasuda, p. 113Google Scholar
  5. [5]
    D. Dingle, K.L. Shaklee, R.F. Leheny, and R.B. Zetterstrom, Appl. Phys. Lett. 19 (1971), 5CrossRefADSGoogle Scholar
  6. [6]
    H. Amano, N. Watanabe, A. Koide, and I. Akasaki, Jpn. J. Appl. Phys. 2 (1993), 1000CrossRefGoogle Scholar
  7. [7]
    M.A. Khan, S. Krishmankutty, R.A. Skogman, J.N. Kuznia, and D.T. Olson, Appl. Phys. Lett. 65 (1994), 520CrossRefADSGoogle Scholar
  8. [8]
    H. Amano, T. Tanaka, Y. Kunii, K. Kato, S.T. Kim, and I. Akasaki, Appl. Phys. Lett. 64 (1994), 1377CrossRefADSGoogle Scholar
  9. [9]
    X.H. Yang et al., Appl. Phys. Lett. 66 (1995), 1CrossRefADSGoogle Scholar
  10. [10]
    I. Akasaki, H. Amano, S. Sota, H. Sakai, T. Tanaka, M. Koike, Jpn. J. Appl. Phys. 34 (1995), 1517CrossRefADSGoogle Scholar
  11. [11]
    S. Nakamura, Proc. International Symposium on Blue Laser and Light Emitting Diodes, Chiba University, Japan, March 1996, ed. A. Yoshikawa, K. Kihino, M. Kobayashi, T. Yasuda, p. 119Google Scholar
  12. [12]
    B. Monemar, J. P. Bergman, H. Amano, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Proc. Intern, Symposium on Blue Laser and Light Emmitting Diodes, Chiba University, Japan, March 1996, ed. A. Yoshikawa, K. Kihino, M. Kobayashi, T. Yasuda, p. 135Google Scholar
  13. [13]
    K. Naniwae, S. Itoh, H. Amano, K. Itoh, K. Hiramatsu, I. Akasaki I J. Crystal Growth 99 (1990), 381CrossRefADSGoogle Scholar
  14. [14]
    I. Akasaki I., H. Amano, N. Koide, M. Kotaki, K. Manabe, Physica B 185 (1993), 428CrossRefADSGoogle Scholar
  15. [15]
    D. Schikora, D. J. As, M. Hankeln, K. Lischka, T. Burow, F. Henneberger, T. Litz, A. Waag, Proc. of the First European Workshop on GaN EGW-1, Rigi, Switzerland, to be published in MRS Proc. vol. xxx (1996)Google Scholar
  16. [16]
    L. Podlowski, A. Hoffmann, and I. Broser, J. Cryst. Growth 117 (1992), 698CrossRefADSGoogle Scholar
  17. [17]
    L. Eckey, L. Podlowski, A. Göldner, A. Hoffmann, I. Broser, B. K. Meyer, D. Volm, T. Streibl, T. Detchprohm, K. Hiramatsu, H. Amano, I. Akasaki, Ist. Phys. conf. Ser. No 142: Chapter 6, paper presented at Silicon Carbide and Related Materials 1995 Conf., Kyoto, Japan, ed. by S. Nakashima, H. Matsunami, S. Yoshida and H. Harima, IOP Publishing Ltd, p. 927Google Scholar
  18. [18]
    M. Rosenzweig, Thesis TU Berlin, 1981, I. Broser, M. Rosenzweig, R. Broser, M. Richard, E. Birkicht, phys. stat. sol. (b) 90 (1978), 77, I. Broser, M. Rosenzweig, phys. stat. sol. (b) 95, 141CrossRefGoogle Scholar
  19. [19]
    R. Dingle, D.D. Sell, S.E. Stokowski, and M. Ilegems, Phys. Rev. B 4 (1971), 1211CrossRefADSGoogle Scholar
  20. [20]
    J.J. Hopfield, J. Phys. Chem. Solids 15 (1960), 97CrossRefADSGoogle Scholar
  21. [21]
    H. Amano, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 27 (1988), L1384CrossRefADSGoogle Scholar
  22. [22]
    D. Volm, K. Oettinger, T. Streibl, D. Kovalev, M. Ben-Chorin, J. Diener, B.K. Meyer, J. Majewski, L. Eckey, A. Hoffmann, H. Amano, I. Akasaki, K. Hiramatsu, T. Detchprohm, (published in Phys. Rev.)Google Scholar
  23. [23]
    L. Eckey, A. Hoffmann, R. Heitz, I. Broser, B.K. Meyer, T. Detchprohm, K. Hiramatsu, H. Amano, and I. Akasaki, 1st Int. Symposium on GaN and Related Materials, ed. R.D. Dupuis, S. Nakamura, F.A. Ponce, J.A. Edmund, Material Research Soc. Symp. Boston (1995), Vol. 395Google Scholar
  24. [24]
    G. D. Chem, M. Smith, J. Y. Lin, H. X. Jiang, M. Asif Kahn, C. J. Sun, Appl. Phys. Lett. 67 (1995), 1653CrossRefADSGoogle Scholar
  25. [25]
    A. Hangleiter, T. Forner, Jin-Seo Im, V. Härle, F. Scholz, 1st Int. Symposium on GaN and Related Materials, ed. R.D. Dupuis, S. Nakamura, F. A. Ponce, J. A. Edmund, Material Research Soc. Symp. Boston (1995), Vol. 395 Google Scholar
  26. [26]
    L. Eckey, J. Holst, A. Hoffmann, I. Broser, T. Detchprohm, K. Hiramatsu, Proc. 1st Int. European Workshop on GaN, Rigi (CH), 1996Google Scholar
  27. [27]
    H. Saito, S. Shionoya, J. Phys. Soc., Jpn. 37 (1974), 423CrossRefADSGoogle Scholar
  28. [28]
    S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys 31 (1992), 1258CrossRefADSGoogle Scholar
  29. [29]
    E.R. Glaser, T.A. Kennedy, K. Doverspike, L.B. Rowland, D.K. Glaskill, J.A. Freitas, Jr., M. Asif Khan, D.T. Olson, J.N. Kuznia, D.K. Wickenden, Phys. Rev. B 51 (1995), 13326CrossRefADSGoogle Scholar
  30. [30]
    M. Smith, G.D. Chen, J. Y. Lin, H.k. Jiang, A. Salvador, W. Kim, ž. Aktas, A. Botchkarev, H. Morkoç, and B. Goldenberg, 67 (1995), 3387Google Scholar
  31. [31]
    Figure is taken from M. Kunzer, U. Kaufmann, K. Maier, J. Schneider, N. Herres, I. Akasaki, and H. Amano, Mat. Sci. Forum 143–147 (1994), 87CrossRefGoogle Scholar
  32. [32]
    C. Johnson, J.Y. Lin, H. X. Jiang, M. Asif Khan, and C.J. Sun, Appl. Phys. Lett. xx (1996), xxGoogle Scholar
  33. [33]
    D. W. Jenkins, J. D. Dow, and M.-T. Tsai, J. Appl. Phys. 72 (1992), 4130CrossRefADSGoogle Scholar
  34. [34]
    P. Boguslawski, E.L. Briggs, and J. Bernholc, Phys. Rev. B 51 (1995), 17255CrossRefADSGoogle Scholar
  35. [35]
    B-C. Chung, M. Gershenzon, J. Appl. Phys. 72 (1992), 651CrossRefADSGoogle Scholar
  36. [36]
    P. Perlin, T. Suki, H. Teisseyre, H. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Bernholc, J.C. Chervin, A. Polian, and T.D. Moustakas, Phys. Rev. Lett. 75 (1995), 296CrossRefADSGoogle Scholar
  37. [37]
    H. Siegle, L. Eckey, A. Hoffmann, C. Thomsen, B. K. Meyer, D. Schikora, M. Hankeln, and K. Lischka, Solid State Commun. 96 (1995), 943CrossRefADSGoogle Scholar
  38. [38]
    H. Siegle, L. Thurian, L. Eckey, A. Hoffmann, C. Thomsen, B.K. Meyer, H. Amano, I. Akasaki, T. Detchprohm, K. Hiramatsu, Appl. Phys. Lett. 68 (1996), 1265CrossRefADSGoogle Scholar
  39. [39]
    P. Thurian, L. Eckey, H. Siegle, J. Holst, P. Maxim, R. Heitz, A. Hoffmann, Ch. Thomsen, I. Broser, K. Pressel, I. Akasaki, H. Amano, K. Hiramatsu, T. Detchprohm, D. Schikora, M. Hankeln, K. Lischka Proc. Intern, Symposium on Blue Laser and Light Emmitting Diodes, Chiba University, Japan, March 1996, ed. A. Yoshikawa, K. Kihino, M. Kobayashi, T. Yasuda, p. 180Google Scholar
  40. [40]
    L. Eckey, A. Hoffmann, D. Schikora, M. Hankeln, to be publishedGoogle Scholar
  41. [41]
    J. Menninger, U. Jahn, O. Brand, H. Yang, and K. Ploog, Phys. Rev. B 53 (1996), 1881CrossRefADSGoogle Scholar
  42. [42]
    For a survey of Raman spectra on sapphire see i.e. S.P.S. Portoand R.S. Krishan, J. Chem. Phys. Rev. 47 (1967), 1009CrossRefADSGoogle Scholar
  43. [43]
    Jörg Neugebauer and Chris G. Van de Walle, Appl. Phys. Lett. issue 22.7.1996Google Scholar
  44. [44]
    L. Eckey, J.-Ch. Holst, P. Maxim, R. Heitz, A. Hoffmann, I. Broser, B. K. Meyer, C. Wetzel, E. N. Mokhov, P. G. Baranov, Appl. Phys. Lett. 68 (1996), 415CrossRefADSGoogle Scholar
  45. [45]
    C. H. Hong, D. Pavilidis, S. W. Brown, S. C. Rand, J. Appl. Phys. 77 (1995), 1705CrossRefADSGoogle Scholar
  46. [46]
    J. Gutowski, A. Hoffmann, Materials Science Forum 38–41 (1989), 1391–1396CrossRefGoogle Scholar
  47. [47]
    A. Hoffmann, J. Christen, J. Gutowski, Advanced Materials for Optics and Electronics 1 (1992), 25CrossRefGoogle Scholar
  48. [48]
    A. Hoffmann, L. Eckey, P. Maxim, J.-Chr. Holst, R. Heitz, D.M. Hofmann, D. Kovalev, G. Steude, D. Volm, B.K. Meyer, T. Detchprohm, H. Amano, I. Akasaki Proc. 1st Topical Workshop on III–V Nitrides, TWN’95, Nagoya, (1995), published in Solid State Electronics (1996).Google Scholar
  49. [49]
    K. Maier, M. Kunzer, U. Kaufmann, J. Schneider, B., Monemar, I. Akasaki, H. Amano, Mat. Science Forum 143–147 (1994), 93CrossRefGoogle Scholar
  50. [50]
    R. Heitz, P. Thurian, I. Loa, L. Eckey, A. Hoffmann, I. Broser, K. Pressel, B.K. Meyer, E.N. Mokhov, Appl. Phys. Lett. 67 (1995), 2822CrossRefADSGoogle Scholar
  51. [51]
    J. Bauer, U. Kaufmann, M. Kunzer, J. Schneider, H. Amano, I. Akasaki, T. Detchprohm, K. Hiramatsu, Appl. Phys. Lett. 64 (1994), 857CrossRefADSGoogle Scholar
  52. [52]
    R. Heitz, K. Pressel, P. Thurian, I. Loa, L. Eckey, A. Hoffmann, I. Broser, B.K. Meyer, E.N. Mokhov Phys Rev. B 52 (1995) 16508CrossRefADSGoogle Scholar
  53. [53]
    J. M. Langer, H. Heinrich, Phys. Rev. Lett. 55 (1985), 1414.CrossRefADSGoogle Scholar
  54. [54]
    R. Heitz, P. Maxim, L. Eckey, P. Thurian, I. Broser, K. Pressel, B.K. Meyer, Phys. Rev. B, accepted for publicationGoogle Scholar
  55. [55]
    P. Parrot, A. Geoffroy, C. Naud, W. Busse, and H.-E. Gumlich, Phys. Rev. 23 (1981), 5288ADSCrossRefGoogle Scholar
  56. [56]
    R.E. Dietz, D.G. Thomas, J.J. Hopfield, Phys. Rev. Lett. 8 (1962), 391CrossRefADSGoogle Scholar
  57. [57]
    R. Heitz, A. Hoffmann, and I. Broser, Phys. Rev. B 48 (1993), 8672CrossRefADSGoogle Scholar
  58. [58]
    J. Bauer, K. Maier, M. Kunzer, U. Kaufmann, and J. Schneider, Appl. Phys. Lett. 65 (1994), 2211; J. Baur, M. Kunzer, K. Maier, U. Kaufmann, and J. Schneider, Mat. Science and Engineering B29 (1995), 61CrossRefADSGoogle Scholar
  59. [59]
    G. Martin, S. Stride, J. Thornton, and H. Morkoç, Appl. Phys. Lett. 58 (1991), 2375CrossRefADSGoogle Scholar
  60. [60]
    X. Huang, T.S. Chen, S.E. Hooper, T.J. Foster, L.C. Jenkins, J. Wang, C.T. Foxon, J.W. Orton, L. Eaves, and P.C. Main, J. Vac. Sci. Technol. B13 (1995), 1582CrossRefGoogle Scholar
  61. [61]
    J.C. Phillips, Phys. Rev. 42 (1970), 317Google Scholar
  62. [62]
    R. Heitz, A. Hoffmann, and I. Broser, Phys. Rev. B 45 (1992), 8977CrossRefADSGoogle Scholar
  63. [63]
    E. Mollwo, G. Müller, and P. Wagner, Solid State Comm. 13 (1973), 1283CrossRefADSGoogle Scholar
  64. [64]
    Numerical data and functions in science and technology/Landolt-Börnstein, Vol. III/17 a, Springer-Verlag, Berlin, Heidelberg, New York, 1982Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  1. 1.Institut für Festkörperphysik der Technischen Universität Berlin Sekr. PN 5-1BerlinGermany

Personalised recommendations