Advertisement

The study of solid-liquid interfaces by in-situ STM

Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 36)

Abstract

With the invention of scanning tunneling microscopy (STM) a structure-sensitive technique for in-situ studies with atomic-scale resolution of electrode surfaces and their structural changes has become available to electrochemists. This has opened up a new dimension in the study of solid-liquid interfaces. After a brief introduction to the peculiarities of in-situ STM, its potential for obtaining an atomistic insight in simple electrochemical processes will be demonstrated with examples from the authors’ laboratory. These include (i) surface reconstruction phenomena at the gold-electrolyte interface, (ii) step dynamics and anion-induced surface mobility, (iii) the initial stages of electrolytic metal deposition and (iv) the electrochemical nanostructuring of gold surfaces by a tip-induced deposition of metal clusters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    W. N. Hansen, D. M. Kolb and D. W. Lynch (eds.), Electronic and Molecular Structure of Electrode-Electrolyte Interfaces, J. Electroanal. Chem. 150 (1983).Google Scholar
  2. [2]
    R. Guidelli (ed.) Electrified Interfaces in Physics, Chemistry and Biology, NATO ASI, Vol. C 355, Kluwer, Dordrecht (1992).Google Scholar
  3. [3]
    S. Trasatti and K. Wandelt (eds.), Surface Science and Electrochemistry, Surf. Sci. 335 (1995).Google Scholar
  4. [4]
    D. M. Mohilner, in: Electroanal. Chemistry Vol. 1., A. J. Bard (ed.), Dekker, New York (1966), p. 241.Google Scholar
  5. [5]
    R. Parsons, in: Comprehensive Treatise of Electrochemistry Vol. 1., J. O’M. Bockris, B. E. Conway and E. Yeager (eds.), Plenum, New York (1980) p. 1.Google Scholar
  6. [6]
    J. O’M. Bockris, M. A. Devanathan and K. Müller, Proc. Roy. Soc. A 274 (1963) 55.CrossRefADSGoogle Scholar
  7. [7]
    D. M. Kolb, J. Vac. Sci. Technol. A 4 (1986) 1294.CrossRefADSGoogle Scholar
  8. [8]
    G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).Google Scholar
  9. [9]
    Ch. B. Duke (ed.), The First Thirty Years, Surf. Sci. 299/300 (1994).Google Scholar
  10. [10]
    A. Hamelin and J. Lecoeur, Collect. Czech. Chem. Commun. 36 (1971) 714.Google Scholar
  11. [11]
    A. T. Hubbard, Crit. Rev. Anal. Chem. 3 (1973) 201.CrossRefGoogle Scholar
  12. [12]
    D. M. Kolb, Z. Phys. Chem. NF 154 (1987) 179.Google Scholar
  13. [13]
    R. Kötz, in: Adv. Electrochem. Sci. Engineering Vol. 1, H. Gerischer and Ch. W. Tobias (eds.), VCH, Weinheim (1990), p. 75.CrossRefGoogle Scholar
  14. [14]
    R. J. Gale (ed.), Spectroelectrochemistry: Theory and Practice, Plenum, New York (1988).Google Scholar
  15. [15]
    H. D. Abruña (ed.), Electrochemical Interfaces: Modern Techniques for In-Situ Interface Characterization, VCH, New York (1991).Google Scholar
  16. [16]
    W. Schmickler and D. Henderson, Progr. Surf. Sci. 22 (1986) 323.CrossRefADSGoogle Scholar
  17. [17]
    T. E. Furtak, Surf. Sci. 299/300 (1994) 945.CrossRefADSGoogle Scholar
  18. [18]
    G. Binnig and H. Rohrer, Helv. Phys. Acta 55 (1982) 726.Google Scholar
  19. [19]
    R. Wiesendanger, Scanning Probe Microscopy, University Press, Cambridge (1994).Google Scholar
  20. [20]
    P. Lustenberger, H. Rohrer, R. Christoph and H. Siegenthaler, J. Electroanal. Chem., 243 (1988) 225.CrossRefGoogle Scholar
  21. [21]
    J. Wiechers, T. Twomey, D. M. Kolb and R. J. Behm, J. Electroanal. Chem. 248 (1988) 451.CrossRefGoogle Scholar
  22. [22]
    R. M. Penner, M. J. Heben and N. S. Lewis, Anal. Chem. 61 (1989) 1630.CrossRefGoogle Scholar
  23. [23]
    C. E. Bach, R. J. Nichols, W. Beckmann, H. Meyer, A. Schulte, J. O. Besenhard and P. D. Jannakoudakis, J. Electrochem. Soc. 140 (1993) 1281.CrossRefGoogle Scholar
  24. [24]
    L. A. Nagahara, T. Thundat and S. M. Lindsay, Rev. Sci. Instrum. 60 (1989) 3128.CrossRefADSGoogle Scholar
  25. [25]
    T. Will, Ph. D. Thesis, University of Ulm (1994).Google Scholar
  26. [26]
    J. Wintterlin, Ph. D. Thesis, Free University Berlin (1989).Google Scholar
  27. [27]
    D. M. Kolb, R. J. Nichols and R. J. Behm, in: Electrified Interfaces in Physics, Chemistry and Biology, R. Guidelli (ed.), NATO ASI, Vol. C 355, Kluwer, Dordrecht (1992), p. 275.Google Scholar
  28. [28]
    G. A. Somorjai, in: Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981).Google Scholar
  29. [29]
    G. A. Somorjai and, M. A. Van Hove, Prog. Surf. Sci. 30 (1989) 201.CrossRefADSGoogle Scholar
  30. [30]
    P. J. Estrup, in: Chemistry and Physics of Solid Surfaces, Vol. 5., R. Vanselow and R. Howe (eds.), Springer Series in Chemical Physics 35, Springer, Berlin (1984), p. 205.Google Scholar
  31. [31]
    M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Bibérian, L. L. Kesmodel, I. Bartoš and G. A. Somorjai, Surf. Sci. 103 (1981) 189, 218.CrossRefGoogle Scholar
  32. [32]
    G. Binnig, H. Rohrer, Ch. Gerber and E. Stoll, Surf. Sci. 144 (1984) 321.CrossRefADSGoogle Scholar
  33. [33]
    K. Heinz, E. Lang, K. Strauss and K. Müller, Appl. Surf. Sci. 11/12 (1982) 611.CrossRefGoogle Scholar
  34. [34]
    A. Hamelin, J. Electroanal. Chem. 142 (1982) 299.CrossRefGoogle Scholar
  35. [35]
    E. Yeager, A. Homa, B. D. Cahan and D. Scherson, J. Vac. Sci. Technol. 20 (1982) 628.CrossRefADSGoogle Scholar
  36. [36]
    D. M. Kolb, G. Lehmpfuhl and M. S. Zei, J. Electroanal. Chem. 179 (1984) 289.CrossRefGoogle Scholar
  37. [37]
    M. S. Zei, G. Lehmpfuhl and D. M. Kolb, Surf. Sci. 221 (1989) 23.CrossRefADSGoogle Scholar
  38. [38]
    D. M. Kolb, in: Structure of Electrified Interfaces, J. Lipkowski and P. N. Ross (eds.), VCH, New York (1993) p. 65.Google Scholar
  39. [39]
    D. M. Kolb, Progr. Surf. Sci. 51 (1996) 109.CrossRefADSGoogle Scholar
  40. [40]
    D. M. Kolb and J. Schneider, Surf. Sci. 162 (1985) 764.CrossRefADSGoogle Scholar
  41. [41]
    D. M. Kolb and J. Schneider, Electrochim. Acta 31 (1986) 929.CrossRefGoogle Scholar
  42. [42]
    D. M. Kolb, W. Boeck, K. M. Ho and S. H. Liu, Phys. Rev. Lett. 47 (1981) 1921.CrossRefADSGoogle Scholar
  43. [43]
    D. M. Kolb and C. Franke, Appl. Phys. A 49 (1989) 379.CrossRefADSGoogle Scholar
  44. [44]
    D. M. Kolb, A. S. Dakkouri and N. Batina, in: Nanoscale Probes of the Solid/Liquid Interface, A. A. Gewirth and H. Siegenthaler (eds.), NATO ASI Vol. E 288, Kluwer, Dordrecht (1995), p. 263.Google Scholar
  45. [45]
    O. M. Magnussen, J. Hotlos, R. J. Behm, N. Batina and D. M. Kolb, Surf. Sci. 296 (1993) 310.CrossRefADSGoogle Scholar
  46. [46]
    X. Gao, G. J. Edens, A. Hamelin and M. J. Weaver, Surf. Sci. 296 (1993) 333.CrossRefADSGoogle Scholar
  47. [47]
    A. S. Dakkouri, Ph. D. Thesis, University of Ulm (1996).Google Scholar
  48. [48]
    A. S. Dakkouri, Sol. State Ionics, in press.Google Scholar
  49. [49]
    P. Skoluda and D. M. Kolb, Surf. Sci. 260 (1992) 229.CrossRefADSGoogle Scholar
  50. [50]
    J. Schneider and D. M. Kolb, Surf. Sci. 193 (1988) 579.CrossRefADSGoogle Scholar
  51. [51]
    J. F. Wolf, B. Vicenzi and H. Ibach, Surf. Sci. 249 (1991) 233.CrossRefADSGoogle Scholar
  52. [52]
    J. Frohn, M. Giesen, M. Poensgen, J. F. Wolf and H. Ibach, Phys. Rev. Lett. 67 (1991) 3543.CrossRefADSGoogle Scholar
  53. [53]
    M. Poensgen, J. F. Wolf, J. Frohn, M. Giesen and H. Ibach, Surf. Sci. 274 (1992) 430.CrossRefADSGoogle Scholar
  54. [54]
    M. Dietterle, T. Will and D. M. Kolb, Surf. Sci. 327 (1995) L495.CrossRefGoogle Scholar
  55. [55]
    A. Pimpinelli, J. Villain, D. E. Wolf, J. J. Métois, J. C. Heyraud, I. Elkinani and G. Uimin, Surf. Sci. 295 (1993) 143.CrossRefADSGoogle Scholar
  56. [56]
    M. Dietterle, D. M. Kolb, M. Giesen, D. Stapel and H. Ibach, in preparation.Google Scholar
  57. [57]
    M. Fleischmann, J. Robinson and R. Waser, J. Electroanal. Chem. 117 (1981) 257.CrossRefGoogle Scholar
  58. [58]
    J. L. Stickney, I. Villegas and C. B. Ehlers, J. Am. Chem. Soc. 111 (1989) 6473.CrossRefGoogle Scholar
  59. [59]
    L. B. Goetting, B. M. Huang, T. E. Lister and J. L. Stickney, Electrochim. Acta 40 (1995) 143.CrossRefGoogle Scholar
  60. [60]
    O. M. Magnussen, J. Hotlos, G. Beitel, D. M. Kolb and R. J. Behm, J. Vac. Sci. Technol. B9 (1991) 969.CrossRefGoogle Scholar
  61. [61]
    T. Will, M. Dietterle and D. M. Kolb, in: Nanoscale Probes of the Solid/Liquid Interface, A. A. Gewirth, and H. Siegenthaler (eds.), NATO ASI Vol. E 288, Kluwer, Dordrecht (1995) p. 137.Google Scholar
  62. [62]
    M. H. Hölzle, Th. Wandlowski and D. M. Kolb, J. Electroanal. Chem. 394 (1995) 271.CrossRefGoogle Scholar
  63. [63]
    E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and Growth, VCH, Weinheim (1996).CrossRefGoogle Scholar
  64. [64]
    D. M. Kolb, M. Dietterle and T. Will, in: Elektrochemie der Elektronenleiter: Metalle, Oxide, Polymere, F. Beck (ed.), GDCh-Monographien, Vol. 3, GDCh, Frankfurt (1996) p. 19.Google Scholar
  65. [65]
    D. M. Kolb, in: Advances in Electrochemistry and Electrochem. Engineering Vol. 11., H. Gerischer and Ch. W. Tobias (eds.), Wiley, New York, (1978), p. 125.Google Scholar
  66. [66]
    N. Batina, T. Will and D. M. Kolb, Faraday Discuss. 94 (1992) 93.CrossRefADSGoogle Scholar
  67. [67]
    J. W. Schultze and D. Dickertmann, Surf. Sci. 54 (1976) 489.CrossRefADSGoogle Scholar
  68. [68]
    K. Jüttner and W. J. Lorenz, Z. Phys. Chem. NF 122 (1980) 163.Google Scholar
  69. [69]
    Y. Nakai, M. S. Zei, D. M. Kolb und G. Lehmpfuhl, Ber. Bunsenges. Phys. Chem. 88 (1984) 340.Google Scholar
  70. [70]
    D. M. Kolb, Ber. Bunsenges. Phys. Chem. 92 (1988) 1175.Google Scholar
  71. [71]
    M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, O. R. Melroy, D. Yee and L. B. Sorensen, Phys. Rev. Lett. 75 (1995) 4472.CrossRefADSGoogle Scholar
  72. [72]
    L. Blum and D. A. Huckaby, J. Electroanal. Chem. 375 (1994) 69.CrossRefGoogle Scholar
  73. [73]
    M. S. Zei, G. Qiao, G. Lehmpfuhl and D. M., Kolb, Ber. Bunsenges. Phys. Chem. 91 (1987) 349.Google Scholar
  74. [74]
    M. H. Hölzle, U. Retter and D. M. Kolb, J. Electroanal. Chem. 371 (1994) 101.CrossRefGoogle Scholar
  75. [75]
    R. J. Nichols, C. E. Bach and H. Meyer, Ber. Bunsenges. Phys. Chem. 97 (1993) 1012.Google Scholar
  76. [76]
    M. Dietterle, T. Will and D. M. Kolb, Surf. Sci. 342 (1995) 29.CrossRefADSGoogle Scholar
  77. [77]
    G. Valette and A. Hamelin, J. Electroanal. Chem. 45 (1973) 301.CrossRefGoogle Scholar
  78. [78]
    M. Dietterle, T. Will and D. M. Kolb, in preparation.Google Scholar
  79. [79]
    R. Randler, M. Dietterle and D. M. Kolb, in preparation.Google Scholar
  80. [80]
    W. F. Egelhoff and I. Jacob, Phys. Rev. Lett. 62 (1989) 921.CrossRefADSGoogle Scholar
  81. [81]
    D. T. Jiang, E. D. Crozier and B. Heinrich, Phys. Rev. B 44 (1991) 6401.CrossRefADSGoogle Scholar
  82. [82]
    E. Hahn, E. Kampshoff, N. Wälchli and K. Kern, Phys. Rev. Lett. 74 (1995) 1803.CrossRefADSGoogle Scholar
  83. [83]
    J. R. Chelikowsky and M. Y. Chou, Phys. Rev. B 38 (1988) 7966.CrossRefADSGoogle Scholar
  84. [84]
    D. M. Eigler and E. K. Schweizer, Nature 344 (1990) 524.CrossRefADSGoogle Scholar
  85. [85]
    M. F. Crommie, C. P. Lutz and D. M. Eigler, Science 262 (1992) 218.CrossRefADSGoogle Scholar
  86. [86]
    W. Li, J. A. Virtanen and R. M. Penner, Appl. Phys. Lett. 60 (1992) 1181.CrossRefADSGoogle Scholar
  87. [87]
    W. Li, J. A. Virtanen and R. M. Penner, J. Phys. Chem. 96 (1992) 6529.CrossRefGoogle Scholar
  88. [88]
    R. Ullmann, T. Will and D. M. Kolb, Chem. Phys. Lett. 209 (1993) 238.CrossRefADSGoogle Scholar
  89. [89]
    R. Ullmann, T. Will and D. M. Kolb, Ber. Bunsenges. Phys. Chem. 99 (1995) 1414.Google Scholar
  90. [90]
    D. M. Kolb, R. Ullmann and T. Will, in preparation.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  1. 1.Department of ElectrochemistryUniversity of UlmUlm

Personalised recommendations