Abstract
We study the influence of disorder and randomly distributed impurities on the properties of correlated antiferromagnets. To this end the Hubbard model with (i) random potentials, (ii) random hopping elements, and (iii) randomly distributed values of interaction is treated using quantum Monte Carlo and dynamical mean-field theory. In cases (i) and (iii) weak disorder can lead to an enhancement of antiferromagnetic (AF) order: in case (i) by a disorder-induced delocalization, in case (iii) by binding of free carriers at the impurities. For strong disorder or large impurity concentration antiferromagnetism is eventually destroyed. Random hopping leaves the local moment stable but AF order is suppressed by local singlet formation. Random potentials induce impurity states within the charge gap until it eventually closes. Impurities with weak interaction values shift the Hubbard gap to a density off half-filling. In both cases an antiferromagnetic phase without charge gap is observed.
Keywords
- Hubbard Model
- Random Potential
- Local Moment
- Finite Size Scaling
- Hubbard Band
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Bibliography
G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, Phys. Rev. Lett. 60, 1446 (1988); B. Keimer et al., Phys. Rev. B 45, 7430 (1992); A. V. Mahajan, H. Alloul, G. Collin, and J. F. Marucco, Phys. Rev. Lett. 72, 3100 (1994).
M. C. Martin, M. Hase, K. Hirota, G. Shirane, Y. Sasago, N. Koide, and K. Uchinokur, Phys. Rev. B 56, 3173 (1997); P. E. Anderson, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 56, 11014 (1997).
M. Azuma, Y. Fujishiro, M. Takano, M. Nohara, and H. Takagi, Phys. Rev. B 55, 8658 (1997).
H. Takagi et al., Phys. Rev. B 40, 2254 (1989); S. Uchida, et al., Phys. Rev. B 43, 7942 (1991).
T. Ido, K. Magoshi, H. Eisaki, and S. Uchida, Phys. Rev. B 44, 12094 (1991).
S. Hüfner, P. Steiner, I. Sander, F. Reinert, and H. Schmitt, Z. Phys. B 86, 207 (1992);ibid. S. Hüfner, P. Steiner, I. Sander, F. Reinert, and H. Schmitt, Z. Phys. B 88, 247 (1992) F. Reinert et al., Z. Phys. B 97, 83 (1995).
M. Ma and E. Fradkin, Phys. Rev. B 28, 2990 (1983); A. M. Finkelshtein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)]; C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984); C. Castellani, C. Di Castro, and M. Grilli, ibid. C. Castellani, C. Di Castro, and M. Grilli, 34, 5907 (1986).
A. M. Finkelshtein, Z. Phys. B 56, 189 (1984); C. Castellani, et al. Phys. Rev. B 30, 1956 (1984); 33, 6169 (1986).
M. Ma, Phys. Rev. B 26, 5097 (1982); J. Yi, L. Zhang, and G. S. Canright, Phys. Rev. B 49, 15 920 (1994).
M. E. Tusch and D. E. Logan, Phys. Rev. B 48, 14 843 (1993).
A. Singh and Z. Tešanović, Phys. Rev. B 41, 614 (1990); 41, 11 457 (1990), S. Basu and A. Singh, Phys. Rev. B 53, 6406 (1996).
V. Janiš and D. Vollhardt, Phys. Rev. B 46, 15 712 (1992).
V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 71, 3218 (1993); Phys. Rev. B 50, 1430 (1994).
V. Janiš, M. Ulmke, and D. Vollhardt, Europhys. Lett. 24, 287 (1993); M. Ulmke, V. Janiš, and D. Vollhardt, Phys. Rev. B 51, 10 411 (1995).
A. Sandvik and D. J. Scalapino, Phys. Rev. 47, 10090 (1993); A. Sandvik, D. J. Scalapino, and P. Henelius Phys. Rev. 50, 10474 (1994).
M. Ulmke and R. T. Scalettar, Phys. Rev. B 55, 4149 (1997).
P. J. H. Denteneer, M. Ulmke, R. T. Scalettar, G. T. Zimanyi, Physica A 251, 162 (1998); M. Ulmke, P. J. H. Denteneer, R. T. Scalettar, G. T. Zimanyi, Europhys. Lett. 42, 655 (1998).
D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982); M. Milovanović, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett. 63, 82 (1989).
R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981). J. E. Hirsch, Phys. Rev. B 28, 4059 (1983). G. Sugiyama and S.E. Koonin, Ann. Phys. 168, 1 (1986); S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys. Lett. 8, 663 (1989). S. R. White, D. J. Scalapino, R. L., Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. scalettar, Phys. Rev. B 40, 506 (1989).
D. A. Huse, Phys. Rev. B 37, 2380 (1988).
W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); D. Vollhardt, in Correlated Electron Systems, ed. V. J. Emery, World Scientific, Singapore, 1993.
T. Pruschke, M. Jarrell, J. K. Freericks, Adv. Phys. 44, 187 (1995); A. Georges. G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
P. A. Wolff, Phys. Rev. 124, 1030 (1961).
J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
A. Singh, M. Ulmke, and D. Vollhardt, Phys. Rev. B 58 (to appear Oct. 1998); condmat/9803094.
P. Sen, S. Basu, and A. Singh, Phys. Rev. B 50, 10 381 (1994); P. Sen and A. Singh, Phys. Rev. B 53, 328 (1996); A. Singh and P. Sen, Phys. Rev. B 57, 10598 (1998).
N. Bulut, D. Hone, D. J. Scalapino, and E. Y. Loh, Phys. Rev. Lett. 62, 2192 (1989); D. Poilbanc, D. J. Scalapino, and W. Hanke, Phys. Rev. Lett. 72, 884 (1994); G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Phys. Rev. Lett. 78, 3563 (1997); Y. Motome, N. Katoh, N. Furukawa, and M. Imada, J. Phys. Soc. Jpn. 65, 1949 (1996).
W. Brenig, and A. P. Kampf, Phys. Rev. B 43, 12 914 (1991); E. Manousakis, Phys. Rev. B, 45, 7570 (1992); C. C. Wan, A. B. Harris and D. Kumar, Phys. Rev. B 48, 1036 (1993).
M. Corti et al., Phys. Rev. B 56, 11056 (1997).
A. Sandvik and M. Vekić, Phys. Rev. Lett. 74, 1226 (1995).
For a recent review see: F. Gebhard, The Mott Metal-Insulator Transition, Springer Tracts in Modern Physics, vol. 137, (Springer, Heidelberg 1997).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH
About this paper
Cite this paper
Ulmke, M. et al. (1999). Disorder and impurities in hubbard-antiferromagnets. In: Kramer, B. (eds) Advances in Solid State Physics 38. Advances in Solid State Physics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107630
Download citation
DOI: https://doi.org/10.1007/BFb0107630
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41575-6
Online ISBN: 978-3-540-44558-6
eBook Packages: Springer Book Archive