Skip to main content

Nanolithography on semiconductor heterostructures by local oxidation with an atomic force microscope

  • Nanostructures
  • Conference paper
  • First Online:
Advances in Solid State Physics 39

Part of the book series: Advances in Solid State Physics ((ASSP,volume 39))

Abstract

We demonstrate that tunable nanostructures in Ga[Al]As heterostructures can be patterned with an atomic force microscope (AFM). By application of suitable voltages to the conductive tip of the AFM, the sample can be oxidized in close vicinity of the tip. Both the semiconductor surface itself as well as gate electrodes on top of it can be modified this way. While sufficiently thin metallic electrode films can be cut into electronically isolated parts by oxidizing them, an oxidation of the GaAs cap layer of a shallow heterostructure leads to depletion of the electron gas underneath the oxide. Here, we discuss AFM lithography as a tool to fabricate tunable semiconductor nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982)

    Google Scholar 

  2. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983)

    Article  ADS  Google Scholar 

  3. G. Binnig and H. Rohrer, Rev. Mod. Phys. 59, 615 (1987)

    Article  ADS  Google Scholar 

  4. For recent reviews, see for example D. Sarid, “Scanning Force Microscopy”, Oxford series in optical and imaging sciences, Oxford University Press, Oxford 1994, and C. Chen, “Introduction to Scanning Tunneling Miocroscopy”, ibid. Oxford series in optical and imaging sciences, Oxford University Press, Oxford 1993

    Google Scholar 

  5. for a review, see “Technology of Proximal Probe Lithography”, Ed. C.R.K. Marrian, SPIE Optical Engineering Press, Bellingham, WA (1993)

    Google Scholar 

  6. D.M. Eigler and E.K. Schweizer, Nature 344, 524 (1990)

    Article  ADS  Google Scholar 

  7. H.J. Mamin, S. Chiang, H. Birk, P.H. Guenthner, and D. Rugar, J. Vac. Sci. Technol. B9, 1398 (1991)

    Article  Google Scholar 

  8. H.J. Mamin, P.H. Guethner and D. Rugar, Phys. Rev. Lett. 65, 2418 (1990)

    Article  ADS  Google Scholar 

  9. I.W. Lyo and Ph. Avouris, J. Chem. Phys. 93, 4479 (1990)

    Article  ADS  Google Scholar 

  10. for an overview on various techniques of surface modification, see R. Wiesendanger, “Scanning Probe Microscopy and Spectroscopy”, Cambridge University Press, Cambridge 1994.

    Book  Google Scholar 

  11. M.A. McCord and R.F.W. Pease, Appl. Phys. Lett. 50, 569 (1987)

    Article  ADS  Google Scholar 

  12. M. Wendel, S. Kühn, H. Lorenz, J.P. Kotthaus, and M. Holland, Appl. Phys. Lett. 65, 1775 (1994)

    Article  ADS  Google Scholar 

  13. B. Irmer, R.H. Blick, F. Simmel, W. Gödel, H. Lorenz, and J.P. Kotthaus, Appl. Phys. Lett. 73, 2051 (1998)

    Article  ADS  Google Scholar 

  14. J. Cortes Rosa, M. Wendel, H. Lorenz, J.P. Kotthaus, M. Thomas and H. Kroemer, Appl. Phys. Lett. 73, 2684 (1998)

    Article  ADS  Google Scholar 

  15. M.A. McCord and R.F.W. Pease, J. Vac. Sci. Technol. B6, 293 (1988)

    Article  Google Scholar 

  16. R.S. Becker, G.S. Higashi, Y.J. Chabal, and A.J. Becker, Phys. Rev. Lett. 65, 1917 (1990)

    Article  ADS  Google Scholar 

  17. J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990); see also J.A. Dagata, Science 270, 1625 (1990), and references therein

    Article  ADS  Google Scholar 

  18. Ph. Avouris, R. Martel, T. Hertel, and R. Sandstrom, Appl. Phys. A 66, S1 (1998)

    Article  Google Scholar 

  19. J. Shirakashi, K. Matsumoto, N. Miura and M. Konagai, Appl. Phys. Lett. 72, 1893 (1998)

    Article  ADS  Google Scholar 

  20. B. Irmer, M. Kehrle, H. Lorenz, and J.P. Kotthaus, Semicond. Sci. Technol. 13, 79 (1998)

    Article  ADS  Google Scholar 

  21. R. Held, T. Heinzel, P. Studerus, and K. Ensslin, and M. Holland, Appl. Phys. Lett. 71, 2689 (1997)

    Article  ADS  Google Scholar 

  22. R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, and W. Wegscheider, Appl. Phys. Lett. 73, 262 (1998)

    Article  ADS  Google Scholar 

  23. L. Young, “Anodic Oxide Films”, Academic Press, New York 1961

    Google Scholar 

  24. S.K. Ghandhi, “VLSI Fabrication Principles”, Wiley, New York 1994

    Google Scholar 

  25. Ph. Avouris, T. Hertel, and R. Martel; Appl. Phys. Lett. 71, 285 (1997)

    Article  ADS  Google Scholar 

  26. B. Irmer, M. Kehrle, H. Lorenz, and J.P. Kotthaus, Appl. Phys. Lett. 71, 1733 (1997)

    Article  ADS  Google Scholar 

  27. R. Schuster, V. Kirchner, X.H. Xia, A.M. Bittner, and G. Ertl; Phys. Rev. Lett. 80, 5599 (1998)

    Article  ADS  Google Scholar 

  28. R. Held, T. Heinzel, P. Studerus, and K. Ensslin, Physica E 2, 748 (1998)

    Article  ADS  Google Scholar 

  29. S.C. Minne, H.T. Soh, Ph. Flueckiger, and C.F. Quate, Appl. Phys. Lett. 66, 703 (1995)

    Article  ADS  Google Scholar 

  30. B.J. van Wees, H. van Houten, C.W.J. Beenaker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988); D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie and G.A.C. Jones, J. Phys. C 21, L209 (1988)

    Article  ADS  Google Scholar 

  31. A. Szafer and A.D. Stone, Phys. Rev. Lett. 62, 300, 1989

    Article  ADS  Google Scholar 

  32. F.A. Maao, I.V. Zozoulenko, and E.R. Hauge, Phys. Rev. B 50, 17320 (1994)

    Article  ADS  Google Scholar 

  33. T. Blomqvist, master thesis, Linköping University 1997

    Google Scholar 

  34. H. Schuhmacher, U. Keyser, U. Zeitler, and R.J. Haug, private communication

    Google Scholar 

  35. H. van Houten, B.J. van Wees, M.G.J. Heimann, and J.P. Andre, Appl. Phys. Lett. 49, 1781 (1986)

    Article  ADS  Google Scholar 

  36. R. Held, S. Lüscher, T. Heinzel, K. Ensslin, and W. Wegscheider, submitted

    Google Scholar 

  37. H. van Houten, C.W.J. Beenakker, and B.J. van Wees, in Semiconductors and Semimetals 35, 9 (1992)

    Article  Google Scholar 

  38. M.J. Berry, J.A. Katine, C.M. Marcus, R.M. Westervelt, and A.C. Gossard, Surf. Sci. 305, 495 (1994), and references therein

    Article  ADS  Google Scholar 

  39. S. Kawabata and K. Nakamura, Phys. Rev. B 57, 6282 (1998), and references therein

    Article  ADS  Google Scholar 

  40. M. Wendel, H. Lorenz, and J.P. Kotthaus, Appl. Phys. Lett. 67, 3732 (1995)

    Article  ADS  Google Scholar 

  41. H. Dai, N. Franklin, and J. Han, Appl. Phys. Lett. 73, 1508 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Heinzel, T. et al. (1999). Nanolithography on semiconductor heterostructures by local oxidation with an atomic force microscope. In: Kramer, B. (eds) Advances in Solid State Physics 39. Advances in Solid State Physics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107474

Download citation

  • DOI: https://doi.org/10.1007/BFb0107474

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41573-2

  • Online ISBN: 978-3-540-44553-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics