Skip to main content

Positron studies of metals

  • Chapter
  • First Online:
Festkörperprobleme 15

Part of the book series: Advances in Solid State Physics ((ASSP,volume 15))

Abstract

The positron annihilation method and its experimental techniques are reviewed. With these techniques information is obtained about electron states in perfect crystals and about defects in real metals. The advantage of the positron annihilation method is outlined for the investigation of Fermi surfaces in disordered metal systems. The sensitivity of the technique for single vacancies and defect clusters is demonstrated with recent results on various metals. Vacancy formation energies can be obtained with high accuracy. In addition to the concentration of defects, information is obtained about the type of these defect centers. This opens new possibilities in annealing studies of irradiated metals to decide between various recovery models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C. D., Science 76, 238 (1932).

    Article  ADS  Google Scholar 

  2. Blackett, P. M. S. and Occhialini, G. P. S., Proc. Phys. Soc. (London) A 139, 699 (1933).

    Article  ADS  Google Scholar 

  3. Dirac, P., Proc. Phys. Soc. (London) A 126, 360 (1930); ibid Proc. Phys. Soc. (London) A 133, 60 (1931).

    Article  ADS  Google Scholar 

  4. Lee-Whitting, G. E., Phys. Rev. 97, 1557 (1955).

    Article  ADS  Google Scholar 

  5. Bell, R. E. and Graham, R. L., Phys. Rev. 90, 644 (1953).

    Article  ADS  Google Scholar 

  6. Weisberg, H. and Berko, S., Phys. Rev. 154, 249 (1967).

    Article  ADS  Google Scholar 

  7. Goldanskii, V. I., Atom. Energy. Rev. 6, 3 (1968).

    Google Scholar 

  8. West, R. N., Positron Studies of Condensed Matter, Taylor and Francis Ltd., London (1973).

    Google Scholar 

  9. Dekhtyar, I. Ya., The Use of Positrons for the Study of Solids, Physics Reports (Sect. C of Phys. Lett.) 9, 243 (1974).

    Article  ADS  Google Scholar 

  10. Wallace, P. R., Solide State Physics 10, 1 (1960).

    Article  Google Scholar 

  11. Berestetskii, V. B., Lifshitz, E. M. and Pitaevskii, L. P., Relativistic Quantum Theory, Pergamon Press, Oxford (1971).

    Google Scholar 

  12. Stewart, A. T., Positron Annihilation, p. 17, A. T. Stewart and L. O. Roellig (eds.) Academic Press, New York (1967).

    Google Scholar 

  13. De Benedetti, S., Cowen, C. E., Konneker, W. R., and Primakoff, H., Phys. Rev. 77, 205 (1950).

    Article  MATH  ADS  Google Scholar 

  14. Ferrell, R. A., Rev. Mod. Physics 28, 308 (1956).

    Article  ADS  Google Scholar 

  15. Kahana, S., Phys. Rev. 129, 1622 (1963); Positron Annihilation (Ref. [12]), p. 51.

    Article  ADS  Google Scholar 

  16. Chang Lee, Soviet Phys. JETP 6, 281 (1958).

    ADS  Google Scholar 

  17. Hodges, C. H., Phys. Rev. Lett. 25, 285 (1970).

    Article  ADS  Google Scholar 

  18. Stewart, A. T., Can. J. Phys. 35, 168 (1957).

    Google Scholar 

  19. Lang, G. and De Benedetti, S., Phys. Rev. 108, 257 (1957).

    Article  Google Scholar 

  20. Stroud, D. and Ehrenreich H., Phys. Rev. 171, 399 (1968).

    Article  ADS  Google Scholar 

  21. Mijnarends, P. E., Phys. Rev. 160, 512 (1967); ibid Phys. Rev. 178, 622 (1969).

    Article  ADS  Google Scholar 

  22. Berko, S., and Plaskett, J. S., Phys. Rev. 112, 1877 (1958).

    Article  ADS  Google Scholar 

  23. Hotz, H. P., Mathiesen, J. M., and Hurley, J. P., Phys. Rev. 170, 351 (1968).

    Article  ADS  Google Scholar 

  24. Rama Reddy, K., and Carrigan, R. A., Nuovo Cim. 66, 105 (1970).

    Article  ADS  Google Scholar 

  25. Mantl, S. and Trifshäuser, W., Phys. Rev. Lett. (in press).

    Google Scholar 

  26. Bell, R. E., Nucl. Instrum. Methods 55, 1 (1966).

    Google Scholar 

  27. Gedcke, D. A. and McDonald, W. J., Nucl. Instrum. Methods 58, 253 (1968).

    Article  ADS  Google Scholar 

  28. Kirkegaard, P. and Eldrup, M., Computer Phys. Commun. 3, 240 (1972).

    Article  ADS  Google Scholar 

  29. Crisp, V. H. C., Lock, D. G., and West, R. N., J. Phys. F 4, 830 (1974).

    Article  ADS  Google Scholar 

  30. Berko, S., Cushner, S., and Erskine, J. C., Phys. Lett. A 27, 668 (1968).

    Article  ADS  Google Scholar 

  31. Roaf, D. J., Phil Trans. Roy. Soc. 255, 135 (1962).

    Article  MATH  ADS  Google Scholar 

  32. Colombino, P., Fiscella, B., and Trossi, L., Nuovo Cim. 31, 950 (1964).

    Article  Google Scholar 

  33. Erskine, J. C. and McGervey, J. D., Phys. Rev. 151, 615 (1966).

    Article  ADS  Google Scholar 

  34. Donaghy, J. J. and Stewart, A. T., Phys. Rev. 164, 391 (1967).

    Article  ADS  Google Scholar 

  35. Shand, J. B., Phys. Lett. A 30, 478 (1969).

    Article  ADS  Google Scholar 

  36. Mogensen, O. E. and Trumpy, G., Phys. Rev. 188, 639 (1969).

    Article  ADS  Google Scholar 

  37. Mijnarends, P. E., Physica 63, 236 (1973).

    ADS  Google Scholar 

  38. Majumdar, C. K., Phys. Rev. B 4, 2111 (1971).

    Article  ADS  Google Scholar 

  39. Fuijwara, K. and Sueoka, O., J. Phys. Soc. Japan 29, 1479 (1966).

    Google Scholar 

  40. Colombino, P., Fiscella, B., and Trossi, L., Nuovo Cim. 27, 589 (1963).

    Article  Google Scholar 

  41. Williams, D. L., Becker, E. H., Petijevich, P., and Jones, G., Phys. Rev. Lett. 20, 448 (1968).

    Article  ADS  Google Scholar 

  42. Triftshäuser, W., Proc. Second Int. Conf. on Positron Annihilation Kingston (1971), p. 4.77.

    Google Scholar 

  43. Fujiwara, K., Sueoka, O., and Imura, T., J. Phys. Soc. Japan 24, 467 (1968).

    Article  ADS  Google Scholar 

  44. Murray, B. W. and McGervey, J. D., Phys. Rev. Lett. 24, 9 (1970).

    Article  ADS  Google Scholar 

  45. Thompson, A., Murray, B. W., and Berko, S., Phys. Lett. A 37, 461 (1971).

    Article  ADS  Google Scholar 

  46. Tanigawa, S., Nanao, S., Kuribayashi, K., and Doyama, M., J. Phys. Soc. Japan 31, 1689 (1971).

    Article  ADS  Google Scholar 

  47. Triftshäuser, W., Stewart, A. T., and Taylor, R., J. Phys. Chem. Solids 32, 2711 (1971).

    Article  ADS  Google Scholar 

  48. Triftshäuser, W. and Stewart, A. T., J. Phys. Chem. Solids 32, 2717 (1971).

    Article  ADS  Google Scholar 

  49. Ziman, J. M., Adv. Phys. 10, 1 (1961).

    Article  ADS  Google Scholar 

  50. MacKenzie, I. K., Langstroth, G. F. O., McKee, B. T. A., and White, C. G., Can. J. Phys. 42, 1836 (1964).

    Google Scholar 

  51. Kusmiss, J. H., and Stewart, A. T., Adv. Phys. 16, 63 (1967); Positron Annihilation (Ref. [12]), p. 341.

    Article  Google Scholar 

  52. Brandt, W., Positron Annihilation (Ref. [12]), p. 180.

    Google Scholar 

  53. Bergersen, B. and Stott, M. J., Solid State Commun. 7, 1203 (1969).

    Article  ADS  Google Scholar 

  54. Connors, D. C. and West, R. N., Phys. Lett. A 30, 24 (1969).

    Article  ADS  Google Scholar 

  55. Seeger, A., Cryst. Latt. Defects 4, 221 (1973); Appl. Phys. 4, 183 (1974).

    Google Scholar 

  56. Seeger, A., J. Phys. F 3, 248 (1973).

    Article  ADS  Google Scholar 

  57. MacKenzie, I. K., LeBlanc, R., and McKee, B. T. A., Phys. Rev. Lett. 27, 580 (1971).

    Article  ADS  Google Scholar 

  58. Snead, C. L., Hall, T. M., and Goland, A. N., Phys. Rev. Lett. 29, 62 (1972).

    Article  ADS  Google Scholar 

  59. Trifshäuser, W. and McGervey, J. D., Appl. Phys. 5, 177 (1974).

    Article  ADS  Google Scholar 

  60. McKee, B. T. A., Triftshäuser, W., and Stewart, A. T., Phys. Rev. Lett. 28, 258 (1972).

    Article  Google Scholar 

  61. Triftshäuser, W., Phys. Rev. B, (in press).

    Google Scholar 

  62. Triftshäuser, W. and McGervey, J. D., Appl. Phys. 6, 177 (1975).

    Article  ADS  Google Scholar 

  63. Simmons, R. O. and Balluffi, R. W., Phys. Rev. 117, 62 (1960).

    Article  ADS  Google Scholar 

  64. Gustafson, D. R., MacKintosh, A. R., and Zaffarano, D. J., Phys. Rev. 130, 1455 (1963).

    Article  ADS  Google Scholar 

  65. West, R. N., Borland, R. E., Cooper, J. R. A., and Cusack, N. E., Proc. Phys. Soc. 92, 195 (1967).

    Article  ADS  Google Scholar 

  66. Itoh, F., Kuroha, M., Kai, K., and Takeuchi, S., J. Phys. Soc. Japan 33, 567 (1972).

    Article  ADS  Google Scholar 

  67. Connors, D. C., Crisp, V. H. C., and West, R. N., J. Phys. F1, 355 (1971).

    Article  ADS  Google Scholar 

  68. Snead, C. L., Goland, A. N., Kusmiss, J. H., Huang, H. C., and R. Meade, Phys. Rev. B3, 275 (1971).

    Article  ADS  Google Scholar 

  69. McKee, B. T. A., Jost, A. G. D., and MacKenzie, I. K., Can. J. Phys. 50, 415 (1972).

    ADS  Google Scholar 

  70. Cotterill, R. M. J., Petersen, K., Trumpy, G., and Träff, J., J. Phys. F 2, 459 (1972).

    Article  ADS  Google Scholar 

  71. Brand, W. and Waung, H. F., Phys. Rev. 133, 3432 (1971).

    Google Scholar 

  72. McKee, B. T., (private communication).

    Google Scholar 

  73. Jank, R. and Triftshäuser, W., (to be published).

    Google Scholar 

  74. Nenno, S. and Kauffman, J. W., J. Phys. Soc. Japan 15, 220 (1960).

    Article  ADS  Google Scholar 

  75. Bianchi, G., Mallejac, D., Janot, C., and Champier, G., Compt. Rend. Acad. Sci. Paris 263, 1404 (1966).

    Google Scholar 

  76. Feder, R. and Nowick, A. S., Phys. Rev. B5, 1244 (1972).

    Article  ADS  Google Scholar 

  77. Feder, R. and Nowick, A. S., Phil. Mag. 15, 805 (1967).

    Article  ADS  Google Scholar 

  78. Doyama, M., Kuribayashi, K., Nanao, S., and Tanigawa, S., Appl. Phys. 4, 153 (1974).

    Article  ADS  Google Scholar 

  79. MacKenzie, I. K., Gingerich, R. R., and Kim, S. M., Proc. Second Int. Conf. on Positron Annihilation, p. 4.31, Kingston (1971).

    Google Scholar 

  80. Simmons, R. O. and Baluffi, R. W., Phys. Rev. 129, 1533 (1963).

    Article  ADS  Google Scholar 

  81. Simmons, R. O. and Balluffi, R. W., Phys. Rev. 119, 600 (1960).

    Article  ADS  Google Scholar 

  82. Simmons, R. O. and Balluffi, R. W., Phys. Rev. 125, 862 (1962).

    Article  ADS  Google Scholar 

  83. Hall, T. M., Jain, K. C., Siegel, R. W., and Goland, A. N., Bull. Am. Phys. Soc. 18, 54 (1973).

    Google Scholar 

  84. McGervey, J. D. and Triftshäuser, W., Phys. Lett. A 44, 53 (1973).

    Article  ADS  Google Scholar 

  85. Lomer, W. M., Vacancies and other Point Defects in Metals and Alloys, p. 79, Inst. of Metals, London (1958).

    Google Scholar 

  86. Beaman, D. R., Balluffi, R. W., and Simmons, R. O., Phys. Rev. 137, 917(1965).

    Article  ADS  Google Scholar 

  87. Dave, N. K., McKee, B. T. A., Stewart, A. T., and Hood, G. M., Conf. on Point Defects and their Aggregates in Metals, University of Sussex, England (1972).

    Google Scholar 

  88. Weller, M., Diehl, J., and Triftshäuser, W., (to be published).

    Google Scholar 

  89. Mogensen, O., Petersen, K., Cotterill, R. M. J., and Hudson, B., Nature 239, 98 (1972).

    Article  ADS  Google Scholar 

  90. Cotterill, R. M. J., MacKenzie, I. K., Smedskjaer, L., Trumpy, G., and Träff, J., Nature 239, 99 (1972).

    Article  ADS  Google Scholar 

  91. Triftshäuser, W., McGervey, J. D., and Hendricks, R. W., Phys. Rev. B9, 3321 (1974).

    Article  ADS  Google Scholar 

  92. Hodges, C. H. and Stott, M. J., Solid State Commun. 12, 1153 (1973).

    Article  ADS  Google Scholar 

  93. Kiritani, M., Shimomura, Y., and Yoshida, S., J. Phys. Soc. Japan 19, 1624 (1964).

    Article  ADS  Google Scholar 

  94. Dekhtyar, I. Ya., Silantev, V. I., and Andonkin, V. T., Phys. Stat. Sol. A11, 153 (1972).

    Article  ADS  Google Scholar 

  95. Schilling, W., Burger, G., Isebeck, K., and Wenzl, H., Vacancies and Interstitial in Metals, A. Seeger, D. Schumacher, W. Schillingand J. Diehl (eds.) North-Holland, Amsterdam (1970).

    Google Scholar 

  96. Schilling, W. and Sonnenberg, K., J. Phys. F3, 322 (1973).

    Article  ADS  Google Scholar 

  97. Corbett, J. W., Smith, R. B., and Walker, R. M., Phys. Rev. 114, 1452 (1959).

    Article  ADS  Google Scholar 

  98. Seeger, A., Vacancies and Interstitials in Metals (Ref. [95]), .

    Google Scholar 

  99. Frank, W. and Seeger, A., Radiation Effects 1, 177 (1969).

    Article  Google Scholar 

  100. Wilkens, M., Vacancies and Interstitials in Metals (Ref. [95]), , p. 485.

    Google Scholar 

  101. Kuper, A., Letaw, H., Slifkin, L., Sonder, E., and Tomizuka, C., Phys. Rev. 96, 1224 (1954).

    Article  ADS  Google Scholar 

  102. Beyeler, M. and Adda, Y., J. Phys. 29, 345 (1968).

    Google Scholar 

  103. Ehrhart, P., Haubold, H.-G., and Schilling, W., in: Festkörperprobleme XIV (Advances in Solid State Physics), p. 87, Pergamon/Vieweg (1974).

    Google Scholar 

  104. Ehrhart, P. and Schlagheck, U., J. Phys. F4, 1575 (1974); ibid J. Phys. 4, 1589 (1974).

    Article  ADS  Google Scholar 

  105. Mantl, S., Gauster, W. B., and Triftshäuser, W., (to be published).

    Google Scholar 

  106. Evans, J. H. and Eldrup, M., (private communication). *** DIRECT SUPPORT *** A00AX015 00011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. Queisser

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Triftshäuser, W. (1975). Positron studies of metals. In: Queisser, H.J. (eds) Festkörperprobleme 15. Advances in Solid State Physics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107385

Download citation

  • DOI: https://doi.org/10.1007/BFb0107385

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08021-1

  • Online ISBN: 978-3-540-75347-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics