Skip to main content

Stoichiometric laser materials

  • Chapter
  • First Online:
Festkörperprobleme 15

Part of the book series: Advances in Solid State Physics ((ASSP,volume 15))

Abstract

This is an introduction into the physics, problems properties, and applications of stoichiometric laser materials. They can store several kilojoules of energy per cm3 for times ranging from 100 ns to 10 ms. Continuous room temperature laser operation can be achieved with just a few hundred microwatts of pump power. Optical gains up to 10 dB per optical wavelength can be expected.

The physics involved in stoichiometric systems is described and related to spectroscopic properties. Threshold, pump power, and dynamical behavior (relaxation oscillations) are calculated including the effects of anisotropy, saturation, inversion profile, reabsorption, pump profile, and mode profile—effects that are important for materials with a high concentration of active ions. Structural aspects such as phase transitions, ferroelasticity, ionic spacings, probability density of rare earth electrons, and energy transfer are discussed using NdP5O14 as an example. Hybrid exchange is proposed as a possible mechanism for energy transfer between rare earth ions. Their wavefunctions overlap appreciably in stoichiometric materials. Examples are given of existing materials and of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schalow, A. L., Wood, D. L., and Clogston, A. M., Phys. Rev. Lett., 3, 271 (1959).

    Article  ADS  Google Scholar 

  2. Varsanyi, F. and Dieke, G. H., Phys. Rev. Lett., 7, 442 (1961).

    Article  ADS  Google Scholar 

  3. Geusic, J. E., Solid State Maser Research (optical), Final Report AD-482-511, Aug. 1965.

    Google Scholar 

  4. Kompfner, R., “Never believe in the expert” (private communication).

    Google Scholar 

  5. Danielmeyer, H. G. and Weber, H. P., IEEE. J. Quantum Electr., QE-8, 805 (1972).

    Article  ADS  Google Scholar 

  6. Weber, H. P., Damen, T. C., Danielmeyer, H. G., and Tofield, B. C., Appl. Phys. Lett. 22, 534 (1973).

    Article  ADS  Google Scholar 

  7. Johnsson, K. R., Ber. dt. Chem. Ges., 22, 976 (1889).

    Article  Google Scholar 

  8. Beucher, M., Les Elements des Terres Rares, Coll. No. 180, 1, 331, C. N. R. S., Paris (1970).

    Google Scholar 

  9. Durif, A., Bull. Soc. Fr. Minéral. Cristallogr. 94, 314 (1971).

    Google Scholar 

  10. Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, H. M. Crosswhite and H. Crosswhite (eds.), Interscience, John Wiley (1968).

    Google Scholar 

  11. Blätte, M., Danielmeyer, H. G., and Ulrich, R., Appl. Phys. 1, 275 (1973).

    Article  ADS  Google Scholar 

  12. Krühler, W. W., Huber, G., Danielmeyer, H. G., and Nekvasil, V. (to be published).

    Google Scholar 

  13. Chinn, S. R. and Danielmeyer, H. G. (unpublished).

    Google Scholar 

  14. Singh, S., Van Uitert, L. G., Potopowicz, J. R., and Grodkiewicz W. H. Appl. Phys. Lett. 24, 10 (1974).

    Article  ADS  Google Scholar 

  15. Zverev, G. M., Kolodnyi, G. Ya., and Osishchenko, A. M., Sov. Phys. JETP 33, 497 (1971).

    ADS  Google Scholar 

  16. Weber, M. J., Phys. Rev. B8, 54 (1973).

    Article  ADS  Google Scholar 

  17. Liao, P. F. and Weber, H. P., J. Appl. Phys. 45, 2931 (1974).

    Article  ADS  Google Scholar 

  18. Huber, G., Krühler, W. W., Bludau, W., and Danielmeyer, H. G. (to be published).

    Google Scholar 

  19. Neeland, J. K. and Evtuhov, V., Phys. Rev. 156, 244 (1967).

    Article  ADS  Google Scholar 

  20. Alves, R. V., Buchanan, R. A., Wickersheim, K. A., and Yates, E. A. C., J. Appl. Phys. 42, 3043 (1971).

    Article  ADS  Google Scholar 

  21. Fisher, R. A. and James, L. T., Lawrence Livermore Labs, Rep. UCRL-50021-73-1 (1973).

    Google Scholar 

  22. Weber, H. P., Liao, P. F., and Tofield, B. C., IEEE J. Quantum Electr., QE-10, 563 (1974).

    Article  ADS  Google Scholar 

  23. Judd, B. R., Phys. Rev. 127, 750 (1962).

    Article  ADS  Google Scholar 

  24. Ofelt, G. S., J. Chem. Phys. 37, 511 (1962).

    Article  ADS  Google Scholar 

  25. Weber, M. J., Varitimos, T. E., and Matsinger, B. H., Phys. Rev. B8, 47 (1973).

    Google Scholar 

  26. Newman, D. J. and Balasubramanian, G., J. Phys. C: Solid State Phys., 8, 37 (1975).

    Article  ADS  Google Scholar 

  27. Danielmeyer, H. G., Progress in Nd: YAG Lasers, in: Lasers: A Series of Advances, Vol IV, A. K. Levine and A. De Maria (eds.), Marcel Dekker Inc. New York (1975).

    Google Scholar 

  28. Förster, Th., Ann. Phys., 2, 55 (1948).

    Article  MATH  Google Scholar 

  29. Dexter, D. L., J. Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  30. Kenkre, V. M. and Knox, R. S., Phys. Rev. Lett., 33, 803 (1974).

    Article  ADS  Google Scholar 

  31. Inokuti, M. and Hirayama, F., J. Chem. Phys., 43, 1978 (1965).

    Article  ADS  Google Scholar 

  32. Van der Ziel, J. P. and Van Uitert, L. G., Phys. Rev. 180, 343 (1969).

    Article  ADS  Google Scholar 

  33. Van der Ziel, J. P., Merrit, F. R., and Van Uitert, L. G., J. Chem. Phys. 50, 4317 (1969).

    Article  ADS  Google Scholar 

  34. Van der Ziel, J. P. and Van Uitert, L. G., Phys. Rev. 186, 332 (1969).

    Article  ADS  Google Scholar 

  35. Prinz, G. A., Phys. Lett., 20, 323 (1966).

    Article  ADS  Google Scholar 

  36. Prinz, G. A., Phys. Rev. 152, 474 (1966).

    Article  ADS  Google Scholar 

  37. Freeman, A. J. and Watson, R., Phys. Rev., 127, 2058 (1962).

    Article  ADS  Google Scholar 

  38. Albrand, K. R., Attig, R., Fenner, J., Jeser, J. P., and Mootz, D., Mat. Res. Bull. 9, 129 (1974).

    Article  Google Scholar 

  39. Hong, H. Y.-P., Acta Cryst.

    Google Scholar 

  40. Weber, H. P. and Liao, P. F., J. Opt. Soc. Am. 64, 1337 (1974).

    Article  ADS  Google Scholar 

  41. Danielmeyer, H. G., J. Appl. Phys. 42, 3125 (1971).

    Article  ADS  Google Scholar 

  42. Chinn, S. R. (private communication).

    Google Scholar 

  43. Danielmeyer, H. G., Jeser, J. P., Schönherr, E., and Stetter, W., J. Crystal Growth 22, 298 (1974).

    Article  ADS  Google Scholar 

  44. Tofield, B. C., Weber, H. P., Damen, T. C., and Pasteur, G. A., Mat. Res. Bull 9, 435 (1974).

    Article  Google Scholar 

  45. Miller, D. C., Shik, L. K., and Brandle, C. D., J. Cryst. Growth, 23, 313 (1974).

    Article  ADS  Google Scholar 

  46. Blanzat, B., Denis, J. P., and Loriers, J., Rept. 10th Rare Earth Res. Conf. April/May 1973, p. 1170–77, Vol. II, U. S. At. En. Comm. Techn. Info. Center Oak Ridge, Tenn.

    Google Scholar 

  47. Krühler, W. W., Jeser, J. P., and Danielmeyer, H. G., Appl. Phys. 2, 329 (1973)

    Article  ADS  Google Scholar 

  48. Damen, T. C., Weber, H. P., and Tofield, B. C., Appl. Phys. Lett. 23, 519 (1973).

    Article  ADS  Google Scholar 

  49. Danielmeyer, H. G., Huber, G., Krühler, W. W., and Jeser, J. P., Appl. Phys. 2, 335 (1973).

    Article  ADS  Google Scholar 

  50. Danielmeyer, H. G., Blätte, M., and Balmer, P., Appl. Phys. 1, 269 (1973).

    Article  ADS  Google Scholar 

  51. Voron'ko, Yu. K., Osiko, V. V., Savost'yanova, N. V., Fedorov, V. S., and Shcherbakov, I. A., Sov. Phys. Sol. State 14, 2294 (1973).

    Google Scholar 

  52. Van Uitert, L. G., J. Luminescence 4, 1 (1971).

    Article  ADS  Google Scholar 

  53. Nakazawa, E. and Shionoya, S., J. Phys. Soc. Jap. 28, 1260 (1970).

    Article  ADS  Google Scholar 

  54. Yoshihara, K., Inoue, A., and Nagakura, S., Chem. Phys. Lett. 13, 459 (1972).

    Article  ADS  Google Scholar 

  55. Yokota, M. and Tanimoto, O., J. Phys. Soc. Jap. 22, 779 (1967).

    Article  ADS  Google Scholar 

  56. Weber, M. J., Phys. Rev. B4, 2932 (1971).

    Article  ADS  Google Scholar 

  57. Motegi, N. and Shionoya, S., J. Luminescence 8, 1 (1973).

    Article  ADS  Google Scholar 

  58. Brecher, C., J. Chem. Phys. 61, 2297 (1974).

    Article  ADS  Google Scholar 

  59. Tofield, B. C. and Weber, H. P., Phys. Rev. B 10, 4560 (1974).

    Article  ADS  Google Scholar 

  60. Schwartz, R. W. and Schatz, P. N., Phys. Rev. B 8, 3229 (1973).

    Article  ADS  Google Scholar 

  61. Bardasarov, Kh. S., Kaminskii, A. A., and Sobolev, B. P., Izvest. Akad. Nauk SSSR Neorg. Mater. 5, 617 (1969).

    Google Scholar 

  62. Hong, H. Y.-P., Acta Cryst. B30, 1854 (1974).

    Google Scholar 

  63. Hong, H. Y.-P. and Dwight, K. Mat. Res. Bull. 9, 1661 (1974).

    Article  Google Scholar 

  64. Hong, H. Y.-P. and Pierce, J. W., Mat. Res. Bull., 9, 179 (1974).

    Article  Google Scholar 

  65. Bagieu, M., Tordjam, I., Durif, A., and Bassi, G., Cryst. Struct. Comm. 3, 387 (1973).

    Google Scholar 

  66. Ballman, A. A., Am. Mineralogist 47, 1380 (1962).

    Google Scholar 

  67. Danielmeyer, H. G., Hong, H. Y.-P., and Chinn, S. R. (unpublished).

    Google Scholar 

  68. Yamada, T., Otsuka, K., and Nakano, J., J. Appl. Phys. 45, 5096 (1974).

    Article  ADS  Google Scholar 

  69. Chinn, S. R. (private communication).

    Google Scholar 

  70. Brun, M. M. P., Lucas, J., and Poulain, M., C. R. Acad. Sc. Paris 276, B–99 (1973).

    Google Scholar 

  71. Chesler, R. B. and Draegert, D. A., Appl. Phys. Lett. 23, 235 (1973).

    Article  ADS  Google Scholar 

  72. Danielmeyer, H. G. (unpublished).

    Google Scholar 

  73. Danielmeyer, H. G., J. Appl. Phys. 41, 4018 (1970).

    Article  ADS  Google Scholar 

  74. Foster, J. D. and Osterink, L. M., J. Appl. Phys. 41, 3656 (1970).

    Article  ADS  Google Scholar 

  75. Leask, M. J. M., Maxwell, K. J., and Wanklyn, B. M., J. Chem. Phys. 47, 3665 (1967).

    Article  ADS  Google Scholar 

  76. Schulz, H., Thiemann, K.-H., and Fenner, J., Mat. Res. Bull. ⊙⊙⊙, (1975).

    Google Scholar 

  77. Jeser, J. P., Nowitzki, A., Thiemann, K.-H., and Danielmeyer, H. G. (unpublished).

    Google Scholar 

  78. Aizu, K., J. Phys. Soc. Jap. 27, 387 (1969). The author is grateful to K. Prettl Univ. of Würzburg, for bringing Aizu's work to his attention.

    Article  ADS  Google Scholar 

  79. Hartmann, W. and Danielmeyer, H. G. (unpublished).

    Google Scholar 

  80. Bimberg, D., Robbins, J. D., Wight, D. R., and Jeser, J. P. (unpublished).

    Google Scholar 

  81. Auzel, F. E., Proc. IEEE 61, 758 (1973).

    Article  Google Scholar 

  82. Nakazawa, E. and Shionoya, S., Phys. Rev. Lett. 25, 1710 (1970).

    Article  ADS  Google Scholar 

  83. Chinn, S. R., Lincoln Lab., private comm. by A. Mooradian.

    Google Scholar 

  84. Hayashi, I. (private communication).

    Google Scholar 

  85. Lee, T. C., Tech. Report No. 0173-1, Stanford Electronics Labs (1965).

    Google Scholar 

  86. Yaney, P. P. and Batico, M. A., J. Appl. Phys. 11, 5029 (1973).

    Article  ADS  Google Scholar 

  87. Fedorchenko, V. P. and Lashkarev, G. V., Izvestya Akad. Nauk SSSR, Neorg. Mat. 10, 1177 (1974).

    Google Scholar 

  88. Heber, J., Hellwege, K. H., and Köbler, U., Helv. Phys. Acta 41, 879 (1968).

    Google Scholar 

  89. Imbusch, G. F., Phys. Rev. 153, 326 (1967).

    Article  ADS  Google Scholar 

  90. Blasse, G., Mat. Res. Bull. 3, 807 (1968).

    Article  Google Scholar 

  91. Otsuka, K. and Yamada, T., Appl. Phys. Lett. 26, 311 (1975).

    Article  ADS  Google Scholar 

  92. Otsuka, K., Yamada, T., Saruwatari, M., and Kimura, T., to be published.

    Google Scholar 

  93. Singh, S., Smith, R. G., and van Uitert, L. G., Phys. Rev. B 10, 2566 (1974).

    Article  ADS  Google Scholar 

  94. Singh, S., Miller, D. C., Potopowicz, J. R., and Shick, L. K., J. Appl. Phys. 46, 1191 (1975). *** DIRECT SUPPORT *** A00AX015 00008

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. Queisser

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Günter Danielmeyer, H. (1975). Stoichiometric laser materials. In: Queisser, H.J. (eds) Festkörperprobleme 15. Advances in Solid State Physics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107381

Download citation

  • DOI: https://doi.org/10.1007/BFb0107381

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08021-1

  • Online ISBN: 978-3-540-75347-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics