Stoichiometric laser materials

Part of the Advances in Solid State Physics book series (ASSP, volume 15)


This is an introduction into the physics, problems properties, and applications of stoichiometric laser materials. They can store several kilojoules of energy per cm3 for times ranging from 100 ns to 10 ms. Continuous room temperature laser operation can be achieved with just a few hundred microwatts of pump power. Optical gains up to 10 dB per optical wavelength can be expected.

The physics involved in stoichiometric systems is described and related to spectroscopic properties. Threshold, pump power, and dynamical behavior (relaxation oscillations) are calculated including the effects of anisotropy, saturation, inversion profile, reabsorption, pump profile, and mode profile—effects that are important for materials with a high concentration of active ions. Structural aspects such as phase transitions, ferroelasticity, ionic spacings, probability density of rare earth electrons, and energy transfer are discussed using NdP5O14 as an example. Hybrid exchange is proposed as a possible mechanism for energy transfer between rare earth ions. Their wavefunctions overlap appreciably in stoichiometric materials. Examples are given of existing materials and of their applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Schalow, A. L., Wood, D. L., and Clogston, A. M., Phys. Rev. Lett., 3, 271 (1959).CrossRefADSGoogle Scholar
  2. [2]
    Varsanyi, F. and Dieke, G. H., Phys. Rev. Lett., 7, 442 (1961).CrossRefADSGoogle Scholar
  3. [3]
    Geusic, J. E., Solid State Maser Research (optical), Final Report AD-482-511, Aug. 1965.Google Scholar
  4. [4]
    Kompfner, R., “Never believe in the expert” (private communication).Google Scholar
  5. [5]
    Danielmeyer, H. G. and Weber, H. P., IEEE. J. Quantum Electr., QE-8, 805 (1972).CrossRefADSGoogle Scholar
  6. [6]
    Weber, H. P., Damen, T. C., Danielmeyer, H. G., and Tofield, B. C., Appl. Phys. Lett. 22, 534 (1973).CrossRefADSGoogle Scholar
  7. [7]
    Johnsson, K. R., Ber. dt. Chem. Ges., 22, 976 (1889).CrossRefGoogle Scholar
  8. [8]
    Beucher, M., Les Elements des Terres Rares, Coll. No. 180, 1, 331, C. N. R. S., Paris (1970).Google Scholar
  9. [9]
    Durif, A., Bull. Soc. Fr. Minéral. Cristallogr. 94, 314 (1971).Google Scholar
  10. [10]
    Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, H. M. Crosswhite and H. Crosswhite (eds.), Interscience, John Wiley (1968).Google Scholar
  11. [11]
    Blätte, M., Danielmeyer, H. G., and Ulrich, R., Appl. Phys. 1, 275 (1973).CrossRefADSGoogle Scholar
  12. [12]
    Krühler, W. W., Huber, G., Danielmeyer, H. G., and Nekvasil, V. (to be published).Google Scholar
  13. [13]
    Chinn, S. R. and Danielmeyer, H. G. (unpublished).Google Scholar
  14. [14]
    Singh, S., Van Uitert, L. G., Potopowicz, J. R., and Grodkiewicz W. H. Appl. Phys. Lett. 24, 10 (1974).CrossRefADSGoogle Scholar
  15. [15]
    Zverev, G. M., Kolodnyi, G. Ya., and Osishchenko, A. M., Sov. Phys. JETP 33, 497 (1971).ADSGoogle Scholar
  16. [16]
    Weber, M. J., Phys. Rev. B8, 54 (1973).ADSCrossRefGoogle Scholar
  17. [17]
    Liao, P. F. and Weber, H. P., J. Appl. Phys. 45, 2931 (1974).CrossRefADSGoogle Scholar
  18. [18]
    Huber, G., Krühler, W. W., Bludau, W., and Danielmeyer, H. G. (to be published).Google Scholar
  19. [19]
    Neeland, J. K. and Evtuhov, V., Phys. Rev. 156, 244 (1967).CrossRefADSGoogle Scholar
  20. [20]
    Alves, R. V., Buchanan, R. A., Wickersheim, K. A., and Yates, E. A. C., J. Appl. Phys. 42, 3043 (1971).CrossRefADSGoogle Scholar
  21. [21]
    Fisher, R. A. and James, L. T., Lawrence Livermore Labs, Rep. UCRL-50021-73-1 (1973).Google Scholar
  22. [22]
    Weber, H. P., Liao, P. F., and Tofield, B. C., IEEE J. Quantum Electr., QE-10, 563 (1974).CrossRefADSGoogle Scholar
  23. [23]
    Judd, B. R., Phys. Rev. 127, 750 (1962).CrossRefADSGoogle Scholar
  24. [24]
    Ofelt, G. S., J. Chem. Phys. 37, 511 (1962).CrossRefADSGoogle Scholar
  25. [25]
    Weber, M. J., Varitimos, T. E., and Matsinger, B. H., Phys. Rev. B8, 47 (1973).Google Scholar
  26. [26]
    Newman, D. J. and Balasubramanian, G., J. Phys. C: Solid State Phys., 8, 37 (1975).CrossRefADSGoogle Scholar
  27. [27]
    Danielmeyer, H. G., Progress in Nd: YAG Lasers, in: Lasers: A Series of Advances, Vol IV, A. K. Levine and A. De Maria (eds.), Marcel Dekker Inc. New York (1975).Google Scholar
  28. [28]
    Förster, Th., Ann. Phys., 2, 55 (1948).zbMATHCrossRefGoogle Scholar
  29. [29]
    Dexter, D. L., J. Chem. Phys. 21, 836 (1953).CrossRefADSGoogle Scholar
  30. [30]
    Kenkre, V. M. and Knox, R. S., Phys. Rev. Lett., 33, 803 (1974).CrossRefADSGoogle Scholar
  31. [31]
    Inokuti, M. and Hirayama, F., J. Chem. Phys., 43, 1978 (1965).CrossRefADSGoogle Scholar
  32. [32]
    Van der Ziel, J. P. and Van Uitert, L. G., Phys. Rev. 180, 343 (1969).CrossRefADSGoogle Scholar
  33. [33]
    Van der Ziel, J. P., Merrit, F. R., and Van Uitert, L. G., J. Chem. Phys. 50, 4317 (1969).CrossRefADSGoogle Scholar
  34. [34]
    Van der Ziel, J. P. and Van Uitert, L. G., Phys. Rev. 186, 332 (1969).CrossRefADSGoogle Scholar
  35. [35]
    Prinz, G. A., Phys. Lett., 20, 323 (1966).CrossRefADSGoogle Scholar
  36. [36]
    Prinz, G. A., Phys. Rev. 152, 474 (1966).CrossRefADSGoogle Scholar
  37. [37]
    Freeman, A. J. and Watson, R., Phys. Rev., 127, 2058 (1962).CrossRefADSGoogle Scholar
  38. [38]
    Albrand, K. R., Attig, R., Fenner, J., Jeser, J. P., and Mootz, D., Mat. Res. Bull. 9, 129 (1974).CrossRefGoogle Scholar
  39. [39]
    Hong, H. Y.-P., Acta Cryst.Google Scholar
  40. [40]
    Weber, H. P. and Liao, P. F., J. Opt. Soc. Am. 64, 1337 (1974).ADSCrossRefGoogle Scholar
  41. [41]
    Danielmeyer, H. G., J. Appl. Phys. 42, 3125 (1971).CrossRefADSGoogle Scholar
  42. [42]
    Chinn, S. R. (private communication).Google Scholar
  43. [43]
    Danielmeyer, H. G., Jeser, J. P., Schönherr, E., and Stetter, W., J. Crystal Growth 22, 298 (1974).CrossRefADSGoogle Scholar
  44. [44]
    Tofield, B. C., Weber, H. P., Damen, T. C., and Pasteur, G. A., Mat. Res. Bull 9, 435 (1974).CrossRefGoogle Scholar
  45. [45]
    Miller, D. C., Shik, L. K., and Brandle, C. D., J. Cryst. Growth, 23, 313 (1974).CrossRefADSGoogle Scholar
  46. [46]
    Blanzat, B., Denis, J. P., and Loriers, J., Rept. 10th Rare Earth Res. Conf. April/May 1973, p. 1170–77, Vol. II, U. S. At. En. Comm. Techn. Info. Center Oak Ridge, Tenn.Google Scholar
  47. [47]
    Krühler, W. W., Jeser, J. P., and Danielmeyer, H. G., Appl. Phys. 2, 329 (1973)CrossRefADSGoogle Scholar
  48. [48]
    Damen, T. C., Weber, H. P., and Tofield, B. C., Appl. Phys. Lett. 23, 519 (1973).CrossRefADSGoogle Scholar
  49. [49]
    Danielmeyer, H. G., Huber, G., Krühler, W. W., and Jeser, J. P., Appl. Phys. 2, 335 (1973).CrossRefADSGoogle Scholar
  50. [50]
    Danielmeyer, H. G., Blätte, M., and Balmer, P., Appl. Phys. 1, 269 (1973).CrossRefADSGoogle Scholar
  51. [51]
    Voron'ko, Yu. K., Osiko, V. V., Savost'yanova, N. V., Fedorov, V. S., and Shcherbakov, I. A., Sov. Phys. Sol. State 14, 2294 (1973).Google Scholar
  52. [52]
    Van Uitert, L. G., J. Luminescence 4, 1 (1971).CrossRefADSGoogle Scholar
  53. [53]
    Nakazawa, E. and Shionoya, S., J. Phys. Soc. Jap. 28, 1260 (1970).ADSCrossRefGoogle Scholar
  54. [54]
    Yoshihara, K., Inoue, A., and Nagakura, S., Chem. Phys. Lett. 13, 459 (1972).CrossRefADSGoogle Scholar
  55. [55]
    Yokota, M. and Tanimoto, O., J. Phys. Soc. Jap. 22, 779 (1967).ADSCrossRefGoogle Scholar
  56. [56]
    Weber, M. J., Phys. Rev. B4, 2932 (1971).ADSCrossRefGoogle Scholar
  57. [57]
    Motegi, N. and Shionoya, S., J. Luminescence 8, 1 (1973).CrossRefADSGoogle Scholar
  58. [58]
    Brecher, C., J. Chem. Phys. 61, 2297 (1974).CrossRefADSGoogle Scholar
  59. [59]
    Tofield, B. C. and Weber, H. P., Phys. Rev. B 10, 4560 (1974).ADSCrossRefGoogle Scholar
  60. [60]
    Schwartz, R. W. and Schatz, P. N., Phys. Rev. B 8, 3229 (1973).ADSCrossRefGoogle Scholar
  61. [61]
    Bardasarov, Kh. S., Kaminskii, A. A., and Sobolev, B. P., Izvest. Akad. Nauk SSSR Neorg. Mater. 5, 617 (1969).Google Scholar
  62. [62]
    Hong, H. Y.-P., Acta Cryst. B30, 1854 (1974).Google Scholar
  63. [63]
    Hong, H. Y.-P. and Dwight, K. Mat. Res. Bull. 9, 1661 (1974).CrossRefGoogle Scholar
  64. [64]
    Hong, H. Y.-P. and Pierce, J. W., Mat. Res. Bull., 9, 179 (1974).CrossRefGoogle Scholar
  65. [65]
    Bagieu, M., Tordjam, I., Durif, A., and Bassi, G., Cryst. Struct. Comm. 3, 387 (1973).Google Scholar
  66. [66]
    Ballman, A. A., Am. Mineralogist 47, 1380 (1962).Google Scholar
  67. [67]
    Danielmeyer, H. G., Hong, H. Y.-P., and Chinn, S. R. (unpublished).Google Scholar
  68. [68]
    Yamada, T., Otsuka, K., and Nakano, J., J. Appl. Phys. 45, 5096 (1974).CrossRefADSGoogle Scholar
  69. [69]
    Chinn, S. R. (private communication).Google Scholar
  70. [70]
    Brun, M. M. P., Lucas, J., and Poulain, M., C. R. Acad. Sc. Paris 276, B–99 (1973).Google Scholar
  71. [71]
    Chesler, R. B. and Draegert, D. A., Appl. Phys. Lett. 23, 235 (1973).CrossRefADSGoogle Scholar
  72. [72]
    Danielmeyer, H. G. (unpublished).Google Scholar
  73. [73]
    Danielmeyer, H. G., J. Appl. Phys. 41, 4018 (1970).CrossRefADSGoogle Scholar
  74. [74]
    Foster, J. D. and Osterink, L. M., J. Appl. Phys. 41, 3656 (1970).CrossRefADSGoogle Scholar
  75. [75]
    Leask, M. J. M., Maxwell, K. J., and Wanklyn, B. M., J. Chem. Phys. 47, 3665 (1967).CrossRefADSGoogle Scholar
  76. [76]
    Schulz, H., Thiemann, K.-H., and Fenner, J., Mat. Res. Bull. ⊙⊙⊙, (1975).Google Scholar
  77. [77]
    Jeser, J. P., Nowitzki, A., Thiemann, K.-H., and Danielmeyer, H. G. (unpublished).Google Scholar
  78. [78]
    Aizu, K., J. Phys. Soc. Jap. 27, 387 (1969). The author is grateful to K. Prettl Univ. of Würzburg, for bringing Aizu's work to his attention.ADSCrossRefGoogle Scholar
  79. [79]
    Hartmann, W. and Danielmeyer, H. G. (unpublished).Google Scholar
  80. [80]
    Bimberg, D., Robbins, J. D., Wight, D. R., and Jeser, J. P. (unpublished).Google Scholar
  81. [81]
    Auzel, F. E., Proc. IEEE 61, 758 (1973).CrossRefGoogle Scholar
  82. [82]
    Nakazawa, E. and Shionoya, S., Phys. Rev. Lett. 25, 1710 (1970).CrossRefADSGoogle Scholar
  83. [83]
    Chinn, S. R., Lincoln Lab., private comm. by A. Mooradian.Google Scholar
  84. [84]
    Hayashi, I. (private communication).Google Scholar
  85. [85]
    Lee, T. C., Tech. Report No. 0173-1, Stanford Electronics Labs (1965).Google Scholar
  86. [86]
    Yaney, P. P. and Batico, M. A., J. Appl. Phys. 11, 5029 (1973).CrossRefADSGoogle Scholar
  87. [87]
    Fedorchenko, V. P. and Lashkarev, G. V., Izvestya Akad. Nauk SSSR, Neorg. Mat. 10, 1177 (1974).Google Scholar
  88. [88]
    Heber, J., Hellwege, K. H., and Köbler, U., Helv. Phys. Acta 41, 879 (1968).Google Scholar
  89. [89]
    Imbusch, G. F., Phys. Rev. 153, 326 (1967).CrossRefADSGoogle Scholar
  90. [90]
    Blasse, G., Mat. Res. Bull. 3, 807 (1968).CrossRefGoogle Scholar
  91. [91]
    Otsuka, K. and Yamada, T., Appl. Phys. Lett. 26, 311 (1975).CrossRefADSGoogle Scholar
  92. [92]
    Otsuka, K., Yamada, T., Saruwatari, M., and Kimura, T., to be published.Google Scholar
  93. [93]
    Singh, S., Smith, R. G., and van Uitert, L. G., Phys. Rev. B 10, 2566 (1974).ADSCrossRefGoogle Scholar
  94. [94]
    Singh, S., Miller, D. C., Potopowicz, J. R., and Shick, L. K., J. Appl. Phys. 46, 1191 (1975). *** DIRECT SUPPORT *** A00AX015 00008CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1975

Authors and Affiliations

  1. 1.Max-Planck-Institut für Festkörperforschung7 Stuttgart 1Germany

Personalised recommendations