Advertisement

Baryon current solving SU(3) charge-current algebra

  • Hagen Kleinert
Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 49)

Abstract

The group dynamical prescriptions for constructing conserved currents of baryons of fixed internal quantum numbers are extended as to apply to the whole SU(3) octet of weak and electromagnetic curents.

It is shown how for any dynamical group such a current octet can be found which satisfies the charge-current commutation rules at infinite momentum and is not proportional to the particle charges. The SU(3) symmetry described by these currents is broken, such that the masses within every SU(3) multiplet are split and strangeness changing currents are not conserved.

Finally, some comments are made on a possible extension of the algebra by an axial-vector octet of currents in order to generate the full chiral SU(3)×SU(3) charge-current algebra.

These lectures are based on work done in collaboration with D. Corrigan and B. Hamprecht.

Keywords

Form Factor Mass Formula Tensor Operator Fermion Representation Commutation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    See the lecture by Barut, A. O.: Springer Tracts in Mod. Phys., Vol. 50 (1969).Google Scholar
  2. 2.
    Kleinert, H.: Fortschr. Phys. 16, 1 (1968).CrossRefGoogle Scholar
  3. 3.
    For an extensive study of this subject see: Hamprecht, B., and H. Kleinert: Univ. of Colorado preprint, May 1968; Hamprecht, B.: Fortschr. Phys. 16, 35 (1969). There are very few parameters in this approach reproducing the decay properties of almost the complete Rosenfeld table for baryon resonances.Google Scholar
  4. 4.
    Kleinert, H.: Phys. Rev. 163, 1807 (1967). Kleinert, H., Barut, A. O., D. Corrigan, and H. Kleinert: Phys. Rev. Letters 20, 167 (1968). Kleinert, H. Corrigan, D.: University of Colorado, Thesis (1968). In particular, the theory is able to reproduce the experimentally observed double pole formula for G EP=G MP/μ P=G Mn/μ n and \(G_E^n = \frac{t}{{4m^2 }}G_M^n \).ADSCrossRefGoogle Scholar
  5. 5.
    -: Phys. Rev. Letters 18, 1027 (1967). One simply assumes the pseudoscalar to transform as an octet operator under SU (3) and uses experimental masses. The mass splitting cause SU (3) breaking in the form factors. Only the unphysical transitions at rest are SU (3) symmetric.ADSCrossRefGoogle Scholar
  6. 6.
    Hamprecht, B., and H. Kleinert: Phys. Rev. (in press).Google Scholar
  7. 7.
    For simplicity we shall assume isospin invariance of the theory. The electromagnetic breaking effects could be included in this theory in quite the same way as the effect of the medium strong interactions on the strangeness changing currents which we shall focus our attention on. The strangeness changing currents will clearly not be conserved.Google Scholar
  8. 8.
    See the other lectures or, for example; Renner, B.: Current algebras, and their applications. Oxford: Pergamon Press 1968.zbMATHGoogle Scholar
  9. 9.
    Rosenfeld, A. H., et al.: Rev. Mod. Phys. 40, 77 (1968). For some more questionable resonances see Donnachie, A, R. G. Kirsopp, and C. Lovelace Phys. Letters 26 B, 161 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    Kleinert, H.: Phys. Rev. 168 1827 (1968), and Lectures in Theoretical Physics New York: Gordon and Breach 1968.ADSCrossRefGoogle Scholar
  11. 12.
    Barut, A. O., D. Corrigan, and H. Kleinert: Phys. Rev. 167, 1527 (1968).ADSCrossRefGoogle Scholar
  12. 13.
    We absorb the labels s, s 3 in n to simplify the notation.Google Scholar
  13. 14.
    Such a wave equation is given by model 5 of Nambu, Y.: Phys. Rev. 160, 1171 (1967).ADSCrossRefGoogle Scholar
  14. 15.
    Grodsky, I. T., and R. F. Streater: Phys. Rev. Letters 20 695 (1968).ADSCrossRefGoogle Scholar
  15. 16.
    We assume the quaternion representation to be given by L=σ/2 and M=iσ/2 of the Lorentz group.Google Scholar
  16. 17.
    Bebie, H., and H. Leutwyler: Phys. Rev. Letters 19, 618 (1967).ADSCrossRefGoogle Scholar
  17. 19.
    Gell-Mann, M., D. Horn, and J. Weyers: Heidelberg Conference on High Energy Physics and Elementary Particles 1967. Gell-Mann, Leutwyler, H.: University Bern Preprint 1967. Gell-Mann, Kleinert, H.: Montana State University Preprint 1967.Google Scholar
  18. 20.
    Cutkosky, R. E., and M. Leon: Phys. Rev. 135, B 1445 (1964).ADSCrossRefGoogle Scholar
  19. 21.
    We use the notation and phase conventions of de Swart, J. J.: Rev. Mod. Phys. 35, 916 (1963). The Racah coefficients are tabulated in Krammer, M.: Acta Phys. Austr., Suppl. 1, 183 (1964). The subscripts β, γ of ν are degeneracy labels.ADSCrossRefGoogle Scholar
  20. 22.
    In (35) we have absorbed the degeneracy labels γ, γ′, in ν′ to simplify the notation. The summation clearly extends over those labels as well.Google Scholar
  21. 23.
    Cook, T., C. J. Goebel and B. Sakita: Phys. Rev. Letters 15, 35 (1965).ADSMathSciNetCrossRefGoogle Scholar
  22. 25.
    Kuriyan, J. G., and E. C. G. Sudarshan: Phys. Letters, 21, 106 (1966).ADSCrossRefGoogle Scholar
  23. 26.
    Fulco, J., and D. Y. Wong: Phys. Rev. Letters 15, 274 (1965). The extended bootstrap condition is Γ=C ssuΓ+C stΓ′. For a, detailed discussion of this connection see Fairlie, D. B.: Phys. Rev. 155, 1694 (1968).ADSMathSciNetCrossRefGoogle Scholar
  24. 27.
    Bincer, A. M.: Phys. Rev. 155, 1699 (1967).ADSCrossRefGoogle Scholar
  25. 28.
    For a review on the status of SU (3) and further references see D. D. Reeders talk at the Argonne Symposium 1967.Google Scholar
  26. 29.
    Kernan, A., and W. M. Smart: Phys. Rev. Letters 17, 832 (1966).ADSCrossRefGoogle Scholar
  27. 30.
    Goldberg, M. et al.: Nuovo Cimento 45, 169 (1966), and Tripp, R., et al.: UCRL Report No. 17385 (unpublished).ADSCrossRefGoogle Scholar
  28. 31.
    Barut, A. O., and H. Kleinert: Phys. Rev. Letters 18, 754 (1967).ADSCrossRefGoogle Scholar
  29. 32.
    For a review of this subject see Kleiner, H.: In: Lectures in Theoretical Physics, Vol. 10. New York: Gordon and Breach 1968.Google Scholar
  30. 33.
    Corrigan, D., B. Hamprecht, and H. Kleinert: Nuclear Physics B (in press).Google Scholar
  31. 34.
    Nambu, Y.: Progr. Theor Phys., Commemorative issue in honour of S. Tomonaga, 1966.Google Scholar
  32. 35.
    Bjorken, J. D., and J. D. Walecka: Ann. Phys. 38, 35 (1966).ADSCrossRefGoogle Scholar
  33. 36.
    Reviews on nucleon form factors are contained in W. K. H. Panofsky, Rapporteur's Talk at the Heidelberg International Conference on Elementary Particles, September 1967; H. Joos, ibid. Talk at the Heidelberg International Conference on Elementary Particles, September 1967, Hand, L. H.: Proc. of Inter. Conf. on Particles and Fields. New York: Interscience 1967.Google Scholar
  34. 37.
    Recent measurement of nucleon form factors at CEA: Gotein, M., et al.: Phys. Rev. Letters 18, 106 (1967).—DESY: Albrech, W., et al.: Phys. Rev. Letters 18, 1014 (1967); and SLAC: R. Taylor.—Paper delivered at the International Symposium on Electron and Photon Interactions at high Energies, SLAC, September, 1967.Google Scholar
  35. 38.
    Dunning, J. R., et al.: Phys. Rev. 141, 1286 (1966).ADSCrossRefGoogle Scholar
  36. 39.
    Walecka J. D., and P. A. Zucker: Phys. Rev. 167, 1479 (1968).ADSCrossRefGoogle Scholar
  37. 40.
    Cone, A. A., et al.: Phys. Rev. 156, 1490 (1967).ADSCrossRefGoogle Scholar
  38. 41.
    Lynch, H. L., et al.: HEPL-494 B (1967).Google Scholar
  39. 42.
    Brasse, F., et al.: DESY preprint 67/34, 1967;—Ash, W. W., et al.: Phys. Letters 24 B, 165 (1967);—Tsai, Y. S.: SLAC-PUB-364 (Nov. 1967).Google Scholar
  40. 43.
    Dalitz, R. H., and D. G. Sutherland: Phys. Rev. 146, 1180 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Hagen Kleinert
    • 1
  1. 1.Montana State UniversityBozeman

Personalised recommendations