Skip to main content

Between sobolev and poincaré

  • Chapter
  • First Online:
Book cover Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1745))

Abstract

Let a a ∈ [0, 1] and r ∈ [1, 2] satisfy relation r = 2/(2 − a). Let μ(dx)=c n r exp(-(|x 1|r+|x 2|r+...+|x n |r))dx 1 dx 2...dx n be a probability measure on the Euclidean space (R n, ‖ · ‖). We prove that there exists a universal constant C such that for any smooth real function f on R n and any p ∈ [1,2)

$$E_\mu f^2 - (E_\mu \left| f \right|^p )^{2/p} \leqslant C(2 - p)^a E_\mu \left\| {\nabla f} \right\|^2$$

. We prove also that if for some probabilistic measure μ on R n the above inequality is satisfied for any p ∈ [1, 2) and any smooth f then for any h : R nR such that |h(x)-h(y)|≤∥x-y∥ there is E μ |h| < ∞ and

$$\mu (h - E_\mu h > \sqrt C \cdot t) \leqslant e^{ - Kt^r }$$

for t > 1, where K > 0 is some universal constant.

Research partially supported by KBN Grant 2 P03A 043 15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 52.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida S., Stroock D. (1994) Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1:75–86

    Article  MathSciNet  MATH  Google Scholar 

  2. Davies E.B. (1989) Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92, Cambridge University Press

    Google Scholar 

  3. Gross L. (1975) Logarithmic Sobolev inequalities. Amer. J. Math. 97:1061–1083

    Article  MathSciNet  MATH  Google Scholar 

  4. Kwapień S., Latała R., Oleszkiewicz K. (1996) Comparison of moments of sums of independent random variables and differential inequalities. J. Funct. Anal. 136:258–268

    Article  MathSciNet  MATH  Google Scholar 

  5. Ledoux M. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités XXXIII, Lecture Notes in Math., Springer, to appear

    Google Scholar 

  6. Oleszkiewicz K. (1999) Comparison of moments via Poincaré-type inequality. In: Contemporary Mathematics, 234, Advances in Stochastic Inequalities, AMS, Providence, 135–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vitali D. Milman Gideon Schechtman

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Latała, R., Oleszkiewicz, K. (2000). Between sobolev and poincaré. In: Milman, V.D., Schechtman, G. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107213

Download citation

  • DOI: https://doi.org/10.1007/BFb0107213

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41070-6

  • Online ISBN: 978-3-540-45392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics