Skip to main content

Numerical simulation and analysis of the transition to turbulence

  • Invited Lectures
  • Conference paper
  • First Online:
Fifteenth International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 490))

  • 122 Accesses

Abstract

The aim of this survey is to discuss some of the difficulties one can encounter both when solving Navier-Stokes equations for incompressible flows by an obstacle and analysing the approximate solutions. Far to be exhaustive, some main aspects of the numerical simulation are deliberately pointed out, in addition to the way the obstacle is taken into account and to the far field boundary conditions. Then, using one of the robust methods it is possible to simulate the transition to turbulence for increasing Reynolds numbers. That means to compute transient solutions which need to be analyze and here is the second topic of this paper. Indeed, the classical tools like Fourier analysis are very efficient as long as the solution is periodic but useless when the solution is more complex. Despite the development of wavelets and new algorithms it seems still difficult to distinguish quasi-periodic and chaotic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Brandt, Multigrid techniques: guide with applications to fluid dynamics, GMD-Studien 85 (1984).

    Google Scholar 

  2. C.-H. Bruneau, P. Fabrie, New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness results, M 2 AN 30 (1996).

    Google Scholar 

  3. C.-H. Bruneau, P. Fabrie, Effective downstream boundary conditions for incompressible Navier-Stokes equations, Int. J. Num. Meth. Fluids 19 (1994).

    Google Scholar 

  4. C.-H. Bruneau, C. Jouron, An efficient scheme for solving steady incompressible Navier-Stokes equations, J. Comp. Phys. 89, n 02 (1990).

    Google Scholar 

  5. J.-P. Caltagirone, Sur l'interaction fluide-milieu poreux: application au calcul des efforts exercés sur un obstacle par un fluide visqueux, CRAS 318, série 2 (1994).

    Google Scholar 

  6. C. Canuto, M.-Y. Hussaini, A. Quarteroni, T.-A. Zang, Spectral methods in fluid dynamics, Springer-Verlag (1988).

    Google Scholar 

  7. C. Chui, Wavelets: A tutorial in theory and applications, Academic Press (1992).

    Google Scholar 

  8. G. Danabasoglu, S. Biringen, C.L. Streett, Application of the spectral multidomain method to the Navier-Stokes equations, J. Comp. Phys. 113, n 02 (1994).

    Google Scholar 

  9. M. Farge, E. Goiraud, Y. Meyer, F. Pascal, M.-V. Wickerhauser, Improved predictability of two-dimensional turbulent flows using wavelet packet compression, Fluid Dyn. Res. 10 (1992).

    Google Scholar 

  10. C.-A. Fletcher, Computational techniques for fluid dynamics, Vol. 1 & 2, Springer-Verlag (1991).

    Google Scholar 

  11. V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer-Verlag (1986).

    Google Scholar 

  12. D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an external force field, J. Comp. Phys. 105, n 02 (1993).

    Google Scholar 

  13. P.-M. Gresho, Incompressible fluid dynamics: Some fundamental formulation issues, Ann. Rev. Fluid Mech. 23 (1991).

    Google Scholar 

  14. W. Hackbush, Multigrid methods and applications, Springer-Verlag (1985).

    Google Scholar 

  15. J.-G. Heywood, K. Masuda, R. Rautwann, S.-A. Solarnikov (ed), The Navier-Stokes equations-Theory and Numerical methods, Proceedings of the 2nd Conf., Lecture notes in math. 1530 (1992).

    Google Scholar 

  16. Ch. Hirsch, Numerical Computation of internal and external flows, Vol. 1 & 2 (1990).

    Google Scholar 

  17. P. Le Quere, T. Alziary de Roquefort, Computation of natural convection in two-dimensional cavities with Chebyshev polynomials, J. Comp. Phys. 57 (1985).

    Google Scholar 

  18. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, Report 619 Courant Institute (1992).

    Google Scholar 

  19. M. Marion, R. Temam, Navier-Stokes equations: Theory and approximation, Handbook of Numerical Analysis (to appear).

    Google Scholar 

  20. Y. Meyer, S. Roques (ed), Progress in Wavelet Analysis and Applications, Proceedings of the Int. Conf. (1992).

    Google Scholar 

  21. R. Peyret, T.-D. Taylor, Computational methods for fluid flow, Springer-Verlag (1983).

    Google Scholar 

  22. M.-B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, L. Raphael (ed), Wavelets and their applications, Jones and Barlett Publishers (1992).

    Google Scholar 

  23. E.-M. Saiki, S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method, J. Comp. Phys. 123 (1996).

    Google Scholar 

  24. R.-L. Sani, P.-M. Gresho, Résumé and remarks on the open boundary condition minisymposium, Int. J. Num. Meth. in Fluids, 18 (1994).

    Google Scholar 

  25. C. Taylor, J.-H. Chin, G.-M. Homsy (ed), Numerical methods in laminar and turbulent flow, Vol.7, Part 1 & 2, Proceedings of the 7t h Int. Conf (1991).

    Google Scholar 

  26. F. Thomasset, Implementation of finite elements methods for Navier-Stokes equations, Springer-Verlag (1981).

    Google Scholar 

  27. R. Temam, Navier-Stokes equations, North-Holland (1984).

    Google Scholar 

  28. C.-H. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech. 206 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paul Kutler Jolen Flores Jean-Jacques Chattot

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Bruneau, CH. (1997). Numerical simulation and analysis of the transition to turbulence. In: Kutler, P., Flores, J., Chattot, JJ. (eds) Fifteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107075

Download citation

  • DOI: https://doi.org/10.1007/BFb0107075

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63054-8

  • Online ISBN: 978-3-540-69120-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics