Skip to main content

Anomalous diffusion in the strong scattering limit: A Lévy walk approach

  • Kinetics And Statistics
  • Conference paper
  • First Online:
Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 511))

Abstract

The continuous time random walk (CTRW) is a powerful stochastic theory developed and used to analyze regular and anomalous diffusion. In particular this framework has been applied to sublinear, dispersive, transport and to enhanced Lévy walks. In its earlier version the CTRW does not include the velocities of the walker explicitly, and therefore it is not suited to analyze situations with randomly distributed velocities. Experiments and theory have recently considered systems which exhibit anomalous diffusion and are characterized by an inherent distribution of velocities. Here we develop a modified CTRW formalism, based on a velocity picture in the strong scattering limit, with emphasis on the Lévy walk limit. We consider a particle which randomly collides with unspecified objects changing randomly its velocity. In the time intervals between collision events the particle moves freely. Two probability density functions (PDF) describe such a process: (a) q(τ), the PDF of times between collision events, and (b) F(v), the PDF of velocities of the particle. In this renewal process both the velocity of the random walker and the time intervals between collision events are independent, identically distributed, random variables. When either q(τ) or F(v) are long-tailed the diffusion may become non-Gaussian. The probability density to find the random walker at r at time t, ρ(r, t), is found in Fourier-Laplace space. We discuss the role of initial conditions especially on the way P(v, t), the probabilty density that the particle has a velocity v at time t, decays to its equilibrium. The phase diagram of the regimes of enhanced, sublinear and normal types of diffusion is presented. We discuss the differences and similarities between the Lévy walk collision process considered here and the CTRW for jump processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Shlesinger J. Klafter and Y. M. Wong J. of Stat. Phys. 27 (1982) 499.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. J. P. Bouchaud and A. Georges, Physics Report 195 (1990) 127.

    Article  ADS  MathSciNet  Google Scholar 

  3. M.F. Shlesinger, G. M. Zaslavsky and U. Frisch ed. Lévy Flights and Related Topics in Physics (Springer-Verlag Berlin 1994).

    Google Scholar 

  4. J. Klafter, M. F. Shlesinger and G. Zumofen, Physics Today 49 (1996) 33.

    Article  Google Scholar 

  5. R. Balescu Statistical Dynamics Matter Out of Equilibrium (Imperial College Press London 1997).

    MATH  Google Scholar 

  6. B. Mandelbrot The Fractal Geometry of Nature, (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  7. W. R. Schneider and W. Wyss, J. Math. Phys 30 (1998) 134.

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Metzler, W. G. Glöcke and T. F. Nonnenmacher Physica A 211 (1994) 13.

    Article  ADS  Google Scholar 

  9. H C. Fogedby, Phys. Rev. E 50 (1994) 1657.

    Article  ADS  Google Scholar 

  10. R. Hifler and L. Anton, Phys. Rev. E 51 (1995) R848.

    Google Scholar 

  11. A. Compte, Phys. Rev. E 53 (1996) 4191.

    Article  ADS  Google Scholar 

  12. G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Chaos 7 (1) (1997) 159.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. L. F. Richardson, Proc. R. Soc. London, Ser. A 110, (1926) 709.

    Article  ADS  Google Scholar 

  14. G. K. Batchelor, Proc. Cambridge Philos. Soc. 48 (1952) 345.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Okubo, J. Oceanol. Soc. Jpn. 20 (1962) 286.

    MathSciNet  Google Scholar 

  16. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, (MIT, Cambridge, MA, 1971), Vol 1; (1975) Vol. 2.

    Google Scholar 

  17. H. G. E. Hentschel and I. Procaccia, Phys. Rev. A 29 (1984) 1461.

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Muralinder, D. Ramkrishna, H. Nakanishi and D. Jacobes, Physica A 167 (1990) 539.

    Article  ADS  Google Scholar 

  19. K. G. Wang, L. K. Dong, X. F. Wu, F. W. Zhu and T. Ko, Physica A 203 (1994) 53.

    Article  ADS  Google Scholar 

  20. E.W. Montroll and M.F. Shlesinger in: Nonequilibrium Phenomena II, From Stochastics To Hydrodynamics ed. J.L. Lebowitz and E.W. Montroll (North Holland Amsterdam 1984).

    Google Scholar 

  21. G. H. Weiss Aspects and Applications of the Random Walk (North Holland, Amsterdam, 1994).

    MATH  Google Scholar 

  22. T. Geisel, J. Nierwetberg and A. Zachrel, Phys. Rev. Let. 54 (1985) 616.

    Article  ADS  Google Scholar 

  23. M. F. Shlesinger, B. West and J. Klafter, Phys. Rev. Let., 58 (1987) 1100.

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Masoliver, K. Lindenberg and G. H. Weiss, Physica A 157 (1989) 891.

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Zumofen and J. Klafter, Phys. Rev. E 47 (1993) 851.

    Article  ADS  Google Scholar 

  26. G. Trefán, E. Floriani, B. J. West and P. Grigolini, Phys. Rev. E 50 (1994) 2564.

    Article  ADS  Google Scholar 

  27. S. Marksteiner, K. Ellinger, and P. Zoller, Phys. Rev. A 53 5 (1996) 3409.

    Article  ADS  Google Scholar 

  28. Hermann Schulz-Baldes, Phys. Rev. Lett. 78 (1997) 2176.

    Article  ADS  Google Scholar 

  29. B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, MA, 1968).

    Google Scholar 

  30. J. Klafter, A. Blumen and M. F. Shlesinger, Phys. Rev. A 35 (1987) 3081.

    Article  ADS  MathSciNet  Google Scholar 

  31. E. Barkai and J. Klafter, Phys. Rev. Let. 79, (1997) 2245.

    Article  ADS  Google Scholar 

  32. T. H. Solomon, E. R. Weeks and H. L. Swinney, Phys. Rev. Let. 71, (1995) 23.

    Google Scholar 

  33. A. E. Hansen, E. Schröder, P. Alstrom, J. S. Andersen and M. T. Levinsen, Phys. Rev. Let 79 10 (1997) 1845.

    Article  ADS  Google Scholar 

  34. H. Katori, S. Schlipf and H. Walther, Phys. Rev. Let. 79 12 (1997) 2221.

    Article  ADS  Google Scholar 

  35. O. V. Tel'kovskaya and K. V. Chukbar, JETP 85 1 (1997) 87.

    Article  ADS  Google Scholar 

  36. A. E. Hansen, D. Marteau and P. Tabeling, Phys. Rev. E (1997) submitted.

    Google Scholar 

  37. P. Levitz Europhysics Letters, 39 6 (1997) 593.

    Article  ADS  Google Scholar 

  38. R. Kubo, M. Toda and N. Hashitsume, Statistical Physics 2 (Springer-Verlag, Berlin) 1991.

    Google Scholar 

  39. Barkai and V. Fleurov, Phys. Rev. E 52 (1995) 1558.

    Article  ADS  Google Scholar 

  40. D.H. Zanette and P. A. Alemany, Phys. Rev. Let 75 (1995) 366.

    Article  ADS  Google Scholar 

  41. C. Tsallis, S. V. F. Levy, A. M. C. Souza and R. Maynard Phys. Rev. Let., 75 (1995) 3589.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. J. Klafter and R. Silbey, Phys. Rev. Lett. 44 (1980) 55.

    Article  ADS  Google Scholar 

  43. J. W. Haus and K. W. Kehr, Physics Report 150 (1987) 263.

    Article  ADS  Google Scholar 

  44. B. Berkowitz and H. Scher, Water Resources Research 31 (1995) 1461.

    Article  ADS  Google Scholar 

  45. R. Weeks, J. S. Urbach and H. L. Swinney, Physica D 97, (1996) 291.

    Article  Google Scholar 

  46. J. Klafter and G. Zumofen Physica A 196 (1993) 102.

    Article  ADS  Google Scholar 

  47. E. Barkai and V. Fleurov, Chemical Physics 212 (1996) 69.

    Article  ADS  Google Scholar 

  48. E. Barkai and V. Fleurov, Phys. Rev. E 56 (1997) 6355.

    Article  ADS  Google Scholar 

  49. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B. P. Flannery Numerical Recipes in Fortran Cambridge University Press (New York) 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sadruddin Benkadda George M. Zaslavsky

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Barkai, E., Klafter, J. (1998). Anomalous diffusion in the strong scattering limit: A Lévy walk approach. In: Benkadda, S., Zaslavsky, G.M. (eds) Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas. Lecture Notes in Physics, vol 511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106966

Download citation

  • DOI: https://doi.org/10.1007/BFb0106966

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64635-8

  • Online ISBN: 978-3-540-69180-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics