Skip to main content

DNS/LES of turbulent flow in a square duct: A priori evaluation of subgrid models

  • Conference paper
  • First Online:
Industrial and Environmental Applications of Direct and Large-Eddy Simulation

Part of the book series: Lecture Notes in Physics ((LNP,volume 529))

Abstract

We have performed a priori tests of two dynamic subgrid-scale (SGS) turbulence models using a highly resolved direct numerical simulation (DNS) data-base for the case of incompressible flow in a straight duct of square cross-section. The model testing is applied only to the homogeneous flow direction where grid filtering can be applied without the introduction of commutation errors. The first model is the dynamic (Smagorinsky/eddy viscosity) SGS model (DSM) developed by Germano et al. [5] while the second is the dynamic two-parameter (mixed) model (DTM) developed by Salvetti and Banerjee [2]. As found in prior studies of this sort there is a very poor correlation of the modelled and exact subgrid-scale dissipation in the case of the DSM. The DSM over-predicts subgrid-scale dissipation on average. Instantaneously, the model provides an inaccurate representation of subgrid-scale dissipation, in general underestimating the magnitude by approximately one order of magnitude. On the other hand, the DTM shows excellent agreement with the exact SGS dissipation over most of the duct cross-section with a correlation coefficient of approximately 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Akselvoll and P. Moin (1993). Application of the dynamic localization model to large-eddy simulation of turbulent flow over a backward facing step. In “Engineering Applications of Large Eddy Simulations”, [Eds. U. Piomelli and S. Ragab] ASME-FED, 162 p. 1

    Google Scholar 

  2. M. V. Salvetti and S. Banerjee (1995). A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fl. 7(11), 2831–2847

    Article  MATH  ADS  Google Scholar 

  3. L. Prandtl (1926). Über die ausgebildete Turbulenz. Verh. 2nd Intl. Kong. für Tech. Mech., Zürich, [Eng. transl. NACA Tech. Memo. 435, 62]

    Google Scholar 

  4. A. O. Demuren (1990). Calculation of turbulence-driven secondary motion in ducts with arbitrary cross-sections. AIAA paper 90-0245

    Google Scholar 

  5. M. Germano, U. Piomelli, P. Moin and W. H. Cabot (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fl. (A) 3(7), 1760–1765

    MATH  ADS  Google Scholar 

  6. Y. Zang, R. L. Street and J. R. Koseff (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fl. (A) 5(12), 3186–3196

    ADS  Google Scholar 

  7. J. Bardina, J. H. Ferziger and W. C. Reynolds (1983). Improved turbulence models based on LES of homogeneous incompressible turbulent flow. Stanford Univ. Dept. of Mech. Eng. Tech. Rep. TF-19

    Google Scholar 

  8. F. M. Najjar and D. K. Tafti (1995). Study of discrete test filters and finite difference approximations for the dynamic subgrid-scale stress model. Phys. Fl. 8(4), 1076–1088

    Article  ADS  Google Scholar 

  9. A. Huser and S. Biringen (1993). Direct numerical simulation of turbulent flow in a square duct. J. Fl. Mech. 257, 65–95

    Article  MATH  ADS  Google Scholar 

  10. H. Le and P. Moin (1991). An improvement of fractional-step methods for the incompressible Navier-Stokes equations. J. Comp. Phys. 92, 369

    Article  MATH  ADS  Google Scholar 

  11. M. Germano (1992). Turbulence: the filtering approach. J. Fl. Mech. 238, 325–336

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. J. Smagorinsky (1963). General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev. 91, 99–164

    Article  ADS  Google Scholar 

  13. R. K. Madabhushi and S. P. Vanka (1991). Large eddy simulation of turbulence-driven secondary flow in a square duct. Phys. Fl. (A) 3(11), 2734–2745

    MATH  ADS  Google Scholar 

  14. E. Balaras and C. Benocci (1993). Computation of turbulent driven secondary motions in ducts of square cross section by means of large eddy simulation. Von Kàrman Inst. Tech. Rep. 93-08

    Google Scholar 

  15. R. A. Clark, J. H. Ferziger and W. C. Reynolds (1979). Evaluation of subgrid models using an accurately simulated turbulent flow. J. Fl. Mech. 91, 1–16

    Article  MATH  ADS  Google Scholar 

  16. S. Liu, C. Meneveau and J. Katz (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fl. Mech. 275, 83–119

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sedat Biringen Haluk Örs Akin Tezel Joel H. Ferziger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

O’Sullivan, P.L., Biringen, S., Huser, A. (1999). DNS/LES of turbulent flow in a square duct: A priori evaluation of subgrid models. In: Biringen, S., Örs, H., Tezel, A., Ferziger, J.H. (eds) Industrial and Environmental Applications of Direct and Large-Eddy Simulation. Lecture Notes in Physics, vol 529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106111

Download citation

  • DOI: https://doi.org/10.1007/BFb0106111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66171-9

  • Online ISBN: 978-3-540-48706-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics