Skip to main content

Dynamic DNS of flow-structure interaction problems

  • Conference paper
  • First Online:
Book cover Industrial and Environmental Applications of Direct and Large-Eddy Simulation

Part of the book series: Lecture Notes in Physics ((LNP,volume 529))

  • 153 Accesses

Abstract

Spectral methods have been used with great success in numerical simulations of turbulent flows in simple computational domains. In this paper we present the next generation of spectral methods on unstructured and polymorphic domains suitable for addressing the geometric complexity of industrial applications. These new methods are hierarchical and are well suited for computational steering and dynamic Direct Numerical Simulation (dDNS).

Using dDNS we study flow past a flexible cylinder subject to vortex-induced vibrations. We present results for the lift forces and corresponding cross-flow amplitude of cylinder vibration as well results on statistics and flow vizualizations. These results are in good agreement with experimental data unlike previously published results at lower Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Karniadakis and S.A. Orszag. Nodes, modes and flow codes. Physics Today, 46:34, March 1993.

    Article  Google Scholar 

  2. J.K. Vandiver and L. Li. SHEAR7 Program theoretical Manual. Technical report, MIT, Dept. Ocean Engineering, Cambridge, MA, 1994.

    Google Scholar 

  3. G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods in CFD. Oxford University Press, New York, New York, 1999.

    Google Scholar 

  4. A.T. Patera. A spectral method for fluid dynamics: Laminar flow in a channel expansion. J. Comp. Phys., 54:468, 1984.

    Article  MATH  ADS  Google Scholar 

  5. D.C. Chu and G.E. Karniadakis. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech., 250:1–42, (1993).

    Article  ADS  Google Scholar 

  6. R.D. Henderson and G.E. Karniadakis. Unstructured spectral element methods for simulation of turbulent flows. Journal of Computational Physics, 122:191, 1995.

    Article  MATH  ADS  Google Scholar 

  7. S.J. Sherwin and G.E. Karniadakis. A triangular spectral element method; applications to the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng., 23:83, 1995.

    MathSciNet  Google Scholar 

  8. S.J. Sherwin and G.E. Karniadakis. A new triangular and tetrahedral basis for high-order finite element methods. Int. J. Num. Meth. Eng., 38:3775, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. D.J. Mavriplis and V. Venkatakrishnan. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes. In AIAA-95-1666, San Diego, CA, 1995.

    Google Scholar 

  10. V. Parthasarathy, Y. Kallindereris, and K. Nakajima. Hybrid adaption method and directional viscous multigrid with presmatic-tetrahedral meshes. In AIAA-95-0670, Reno, NV, 1995.

    Google Scholar 

  11. L.-W. Ho. A Legendre spectral element method for simulation of incompressible unsteady free-surface flows. PhD thesis, Massachustts Institute of Technology, 1989.

    Google Scholar 

  12. C.W. Hirt, A.A. Amsden, and H.K. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comp. Phys., 14:27, 1974.

    Article  Google Scholar 

  13. T.J.R. Hughes, W.K. Liu, and T.K. Zimmerman. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng., 29:329, 1981.

    Article  MATH  Google Scholar 

  14. T.C. Warburton. Spectral/hp Element Methods on Polymorphic Multi-Domains: Algorithms and Applications. PhD thesis, Division of Applied Mathematics, Brown University, 1998.

    Google Scholar 

  15. C. Evangelinos. Parallel Simulations of Flexible Cylinders. PhD thesis, Division of Applied Mathematics, Brown University, 1999.

    Google Scholar 

  16. O.M. Griffin. Vortex-induced vibrations of marine structures in uniform and sheared currents. NSF workshop on Riser Dynamics, University of Michigan, 1992.

    Google Scholar 

  17. D.J. Newman and G.E. Karniadakis. Simulations of flow past a freely vibrating cable. Journal of Fluid Mechanics, vol. 344:95–136, 1997.

    Article  MATH  ADS  Google Scholar 

  18. C.H.K. Williamson. Vortex dynamics in the wake. Annual Review of Fluid Mechanics, 28:477–539, 1996.

    Article  ADS  MathSciNet  Google Scholar 

  19. G.D. Miller and C.H.K. Williamson. Control of three-dimensional phase dynamics in a cylinder wake. Experiments in Fluids, 18:26, 1994.

    Article  ADS  Google Scholar 

  20. I. Lomtev, C.B. Quillen, and G.E. Karniadakis. Spectral/hp algorithms on unstructured meshes for compressible viscous flows. J. Comp. Phys., 144:325–357, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis .

Editor information

Sedat Biringen Haluk Örs Akin Tezel Joel H. Ferziger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Evangelinos, C., Karniadakis, G.E. (1999). Dynamic DNS of flow-structure interaction problems. In: Biringen, S., Örs, H., Tezel, A., Ferziger, J.H. (eds) Industrial and Environmental Applications of Direct and Large-Eddy Simulation. Lecture Notes in Physics, vol 529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106098

Download citation

  • DOI: https://doi.org/10.1007/BFb0106098

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66171-9

  • Online ISBN: 978-3-540-48706-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics