Advertisement

Coherent anomaly method and its applications to critical phenomena

  • Masuo Suzuki
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)

Abstract

The basic idea of the CAM theory has been briefly explained. In the present lecture, many applications have been demonstrated explicitly to show how useful the CAM is.

The present work is partially supported by the Society of Non-Traditional Technology.

Keywords

Ising Model Critical Exponent Spin Glass Critical Phenomenon Cluster Variation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Suzuki, J. Phys. Soc. Jpn. 55 (1986) 4205.ADSGoogle Scholar
  2. 2.
    M. Suzuki, M. Katori and X. Hu, J. Phys. Soc. Jpn. 56 (1987) 3092.ADSMathSciNetGoogle Scholar
  3. 3.
    M. Suzuki, X. Hu, M. Katori, A. Lipowski, N. Hatano, K. Minami, and Y. Nonomura, Coherent Anomaly Method — Mean-field, Fluctuations and Systematics (World Scientific, Singapore, 1995).Google Scholar
  4. 4.
    M.E. Fisher and M.N. Barber, Phys. Rev. Lett. 28 (1972) 1516.ADSGoogle Scholar
  5. 5.
    M. Katori and M. Suzuki, J. Phys. Soc. Jpn. 25 (1987) 3113.ADSGoogle Scholar

Appendix List of Papers Concerning the CAM Theory

  1. 1.
    Cenedese, P., J. M. Sanchez and R. Kikuchi: Continuous sequence of meanfield approximations and critical phenomena, Physica A209 (1994) 257–267.ADSGoogle Scholar
  2. 2.
    Chakraborty, K. G.: Coherent anomaly method for Blume-Capel model, Physica A189 (1992) 271–281.ADSGoogle Scholar
  3. 3.
    Ferreira, A. L. C. and S. K. Mendiratta: Mean-field approximation with coherent anomaly method for a non-equilibrium model, J. Phys. A: Math. Gen. 26 (1993) L145–L150.ADSGoogle Scholar
  4. 4.
    Frischat, S. D. and R. Kühn: Finite-size scaling analysis of generalized meanfield theories, J. Phys. A: Math. Gen. 28 (1995) 2771.ADSGoogle Scholar
  5. 5.
    Fujiki, S.: Application of the coherent anomaly method to d-dimensional Ising spin glasses, in Cooperative Dynamics in Complex Physical Systems, ed. H. Takayama (Springer-Verlag, Berlin, 1988) pp. 179–180.Google Scholar
  6. 6.
    Fujiki, S., M. Katori and M. Suzuki: Study of coherent anomalies and critical exponents based on high-level cluster-variation approximations, J. Phys. Soc. Jpn. 59 (1990) 2681–2687.ADSGoogle Scholar
  7. 7.
    Fujiki, S.: Application of the cluster variation method to the ferromagnetic six-state clock model on the triangular lattice and its CAM analysis, J. Phys. Soc. Jpn. 62 (1993) 556–562.ADSGoogle Scholar
  8. 8.
    Hatano, N. and M. Suzuki: Effective-field theory of spin glasses and the coherent-anomaly method. I, J. Stat. Phys. 63 (1991) 25–46.MathSciNetADSGoogle Scholar
  9. 9.
    Hatano, N. and M. Suzuki: Effective-field theory of spin glasses and the coherent-anomaly method. II. Double-cluster approximation, J. Stat. Phys. 66 (1992) 897–911.zbMATHMathSciNetADSGoogle Scholar
  10. 10.
    Hirata, Y. S.: The critical point within the metastable region in D=4 Z(2) lattice gauge theory, Prog. Theor. Phys. 82 (1989) 34–39 (L).ADSGoogle Scholar
  11. 11.
    Horiguchi, T., K. Tanaka and T. Morita: Coherent-anomaly method for the wave-number dependence of the susceptibility, J. Phys. Soc. Jpn. 59 (1990) 4196–4197 (Comment).ADSGoogle Scholar
  12. 12.
    Hu, X., M. M. Katori and M. Suzuki: Coherent-anomaly method in critical phenomena. III. Mean-field transfer-matrix method in the 2D Ising model, J. Phys. Soc. Jpn. 56 (1987) 3865–3880.ADSMathSciNetGoogle Scholar
  13. 13.
    Hu, X. and M. Suzuki: Coherent-anomaly method in critical phenomena. IV. Study of the wave-number-dependent susceptibility in the 2D Ising model, J. Phys. Soc. Jpn. 57 (1988) 791–806.ADSMathSciNetGoogle Scholar
  14. 14.
    Hu, X. and M. Suzuki: Coherent-anomaly method in self-avoiding walk problems, Physica A150 (1988) 310–323.ADSGoogle Scholar
  15. 15.
    Hu, X. and M. Suzuki: Coherent-anomaly method in cooperative phenomena — Some applications to polymer physics, in Space-Time Organization in Macromolecular Fluids, eds. F. Tanaka, M. Doi and T. Ohta (Springer-Verlag, Berlin, 1988) pp. 188–197.Google Scholar
  16. 16.
    Hu, X. and M. Suzuki: An approach to critical phenomena from one subsystem based on the CAM analysis, J. Phys. A: Math. Gen. 23 (1990) 3051–3060.ADSGoogle Scholar
  17. 17.
    Hu, X.: A new possible approach in Kosterlitz-Thouless transitions, Prog. Theor. Phys. 89 (1993) 545–549 (L).ADSGoogle Scholar
  18. 18.
    Hu, X.: Series of effective-field approximations and coherent anomaly in Kosterlitz-Thouless transitions, J. Phys. A: Math. Gen. 27 (1994) 2313–2323.zbMATHADSGoogle Scholar
  19. 19.
    Inui, N.: Application of the coherent anomaly method to the branching annihilation random walk, Phys. Lett. A184 (1993) 79–82.ADSGoogle Scholar
  20. 20.
    Ishinabe, T., J. F. Douglas, A. M. Nemirovsky and K. F. Freed: Examination of the 1/d expansion method from exact enumeration for a self-interacting self-avoiding walk, J. Phys. A: Math. Gen. 27 (1994) 1099–1109.ADSGoogle Scholar
  21. 21.
    Ito, N. and M. Suzuki: Coherent-anomaly method for quantum spin systems, Int. J. Mod. Phys. B2 (1988) 1–11.ADSGoogle Scholar
  22. 22.
    Ito, N. and M. Suzuki: Size dependence of coherent anomalies in self-consistent cluster approximations, Phys. Rev. B43 (1991) 3483–3492.ADSGoogle Scholar
  23. 23.
    Katori, M. and M. Suzuki: Coherent anomaly method in critical phenomena. II. Applications to the two-and three-dimensional Ising models, J. Phys. Soc. Jpn. 56 (1987) 3113–3125.ADSMathSciNetGoogle Scholar
  24. 24.
    Katori, M. and M. Suzuki: Coherent-anomaly method in critical phenomena, in Progress in Statistical Mechanics, ed. C.-K. Hu (World Scientific, Singapore, 1988) pp. 273–287.Google Scholar
  25. 25.
    Katori, M. and M. Suzuki: Coherent-anomaly method in critical phenomena. V. Estimation of the dynamical critical exponent Δ of the two-dimensional kinetic Ising model, J. Phys. Soc. Jpn. 57 (1988) 807–817.ADSMathSciNetGoogle Scholar
  26. 26.
    Katori, M. and M. Suzuki: Study of coherent anomalies and critical exponents based on the cluster-variation method, J. Phys. Soc. Jpn. 57 (1988) 3753–3761.ADSMathSciNetGoogle Scholar
  27. 27.
    Katori, M.: A second-order phase transition as a limit of the first-order phase transitions — Coherent anomalies and critical phenomena in the Potts models —, J. Phys. Soc. Jpn. 57 (1988) 4114–4125.ADSMathSciNetGoogle Scholar
  28. 28.
    Katori, M. and M. Suzuki: On the CAM canonicality of the cluster-variation approximations, Prog. Theor. Phys. Suppl. 115 (1994) 83–93.ADSGoogle Scholar
  29. 29.
    Kawasaki, K., K. Tanaka, C. Hamamura and R. A. Tahir-Kheli: Magnetic phase transitions in randomly diluted FCC spin system with competing interactions: The case with ferromagnetic J 1 and arbitrary J 2, Phys. Rev. B45 (1992) 5321–5327.ADSGoogle Scholar
  30. 30.
    Kawashima, N. and M. Suzuki: Chiral phase transition of planer antiferromagnets analyzed by the super-effective-field theory, J. Phys. Soc. Jpn. 58 (1989) 3123–3130.ADSGoogle Scholar
  31. 31.
    Kawashima, N., M. Katori, C. Tsallis and M. Suzuki: Systematic approach to critical phenomena by the extended variational method and coherent-anomaly method, Int. J. Mod. Phys. B4 (1990) 1409–1422.ADSGoogle Scholar
  32. 32.
    Kawashima, N., N. Hatano and M. Suzuki: Critical behaviour of the two-dimensional EA model with a Gaussian bond distribution, J. Phys. A: Math. Gen. 25 (1992) 4985–5003.ADSGoogle Scholar
  33. 33.
    Kinosita, Y., N. Kawashima and M. Suzuki: Coherent-anomaly analysis of series expansions and its application to the Ising model, J. Phys. Soc. Jpn. 61 (1992) 3887–3901.MathSciNetADSGoogle Scholar
  34. 34.
    Kitatani, H. and T. Oguchi: Ferromagnetic-nonferromagnetic phase boundary on the two-dimensional ±J Ising model, J. Phys. Soc. Jpn. 59 (1990) 3823–3826 (L).ADSGoogle Scholar
  35. 35.
    Kitatani, H., T. Kakiuchi, N. Ito and M. Suzuki: CAM analysis of dimensionality crossover, J. Phys. Soc. Jpn. 63 (1994) 2511–2513 (L).ADSGoogle Scholar
  36. 36.
    Kobayashi, H. and M. Suzuki: Theory of correlation and susceptibility based on the confluent transfer matrix and its associated transfer matrix, Physica A199 (1993) 619–639.ADSMathSciNetGoogle Scholar
  37. 37.
    Kolesík, M. and L. Šamaj: New variational series expansions for lattice models, J. Phys. (France) I 3 (1993) 93–106.ADSGoogle Scholar
  38. 38.
    Kolesík, M. and L. Šamaj: Evidence for the nonuniversality of a 3D vertex model, Phys. Lett. A177 (1993) 87–92.ADSGoogle Scholar
  39. 39.
    Kolesík, M. and L. Šamaj: Series expansion and CAM study of the nonuniversal behavior of the symmetric 16-vertex model, J. Stat. Phys. 72 (1993) 1203–1226.zbMATHADSGoogle Scholar
  40. 40.
    Kolesík, M.: Coherent-anomaly approach to Blume-Emery-Griffiths model, Int. J. Mod. Phys. B8 (1994) 113–126.Google Scholar
  41. 41.
    Konno, N. and M. Katori: Applications of the CAM based on a new decoupling procedure of correlation functions in the one-dimensional contact process, J. Phys. Soc. Jpn. 59 (1990) 1581–1592.MathSciNetADSGoogle Scholar
  42. 42.
    Lipowski, A.: Coherent anomaly method with modified Bethe approximation, J. Magn. Magn. Mater. 96 (1991) 267–274.ADSGoogle Scholar
  43. 43.
    Lipowski, A.: Coherent anomaly method with a new mean-field type approximation, Physica A173 (1991) 293–301.ADSGoogle Scholar
  44. 44.
    Lipowski, A. and M. Suzuki: Study on phase transitions of antiferromagnetic Ising models using the coherent-anomaly method, J. Phys. Soc. Jpn. 61 (1992) 2484–2490.ADSGoogle Scholar
  45. 45.
    Lipowski, A. and M. Suzuki: Convergence of mean-field approximations in site percolation and application of CAM to d = 1 further-neighbors percolation problem, J. Stat. Phys. 69 (1992) 1–16.zbMATHMathSciNetADSGoogle Scholar
  46. 46.
    Lipowski, A. and M. Suzuki: Exact critical temperature by mean-field approximation, J. Phys. Soc. Jpn. 61 (1992) 4356–4366.ADSGoogle Scholar
  47. 47.
    Malakis, A. and S. S. Martinos: Variational approximations and mean-field scaling theory, J. Phys. A: Math. Gen. 27 (1994) 7283–7299.zbMATHADSGoogle Scholar
  48. 48.
    Mano, H.: Study of critical phenomena of quantum spin systems by spin-cluster approximation series, J. Magn. Magn. Mater. 90 & 91 (1990) 281–283.Google Scholar
  49. 49.
    Mano, H. and K. Nakano: Study of critical phenomena by spin-cluster approximation series: Ising spin system, J. Phys. Soc. Jpn. 60 (1991) 548–561.ADSGoogle Scholar
  50. 50.
    Mano, H.: Critical properties of diluted Ising ferromagnets, J. Magn. Magn. Mater. 104–107 (1992) 259–260.Google Scholar
  51. 51.
    Marques, M. C. and A. L. Ferreira: Critical behaviour of a long-range nonequilibrium system, J. Phys. A: Math. Gen. 27 (1994) 3389–3395.ADSGoogle Scholar
  52. 52.
    Minami, K., Y. Nonomura, M. Katori and M. Suzuki: Multi-effective-field theory: Applications to the CAM analysis of the two-dimensional Ising model, Physica A174 (1991) 479–503.ADSGoogle Scholar
  53. 53.
    Minami, K. and M. Suzuki: Coherent-anomaly method applied to the eight-vertex model, Physica A187 (1992) 282–307.ADSGoogle Scholar
  54. 54.
    Minami, K. and M. Suzuki: Non-universal critical behaviour of the two-dimensional Ising model with crossing bonds, Physica A192 (1993) 152–166.ADSGoogle Scholar
  55. 55.
    Minami, K. and M. Suzuki: A two-dimensional Ising model with non-universal critical behaviour, Physica A195 (1993) 457–473.ADSGoogle Scholar
  56. 56.
    Miyazima, S., K. Maruyama and K. Okumura: Critical exponent of bulk conductivity in Swiss cheese model, J. Phys. Soc. Jpn. 60 (1991) 2805–2807 (L).ADSGoogle Scholar
  57. 57.
    Monroe, J. L.: The coherent anomaly method applied to a variety of Ising models, Phys. Lett. A131 (1988) 427–429.ADSMathSciNetGoogle Scholar
  58. 58.
    Monroe, J. L., R. Lucente and J. P. Hourlland: The coherent anomaly method and long-range one-dimensional Ising models, J. Phys. A: Math. Gen. 23 (1990) 2555–2562.ADSGoogle Scholar
  59. 59.
    Nonomura, Y. and M. Suzuki: Coherent-anomaly method in zero-temperature phase transitions in quantum spin systems, J. Phys. A: Math. Gen. 25 (1992) 85–100.ADSMathSciNetGoogle Scholar
  60. 60.
    Nonomura, Y. and M. Suzuki: CAM approach to ground-state phase transition in the two-dimensional transverse Ising model, J. Phys. A: Math. Gen. 25 (1992) 5463–5473.ADSMathSciNetGoogle Scholar
  61. 61.
    Nonomura, Y. and M. Suzuki: CAM approach to correlation function of quantum spin chain in the ground state, J. Phys. Soc. Jpn. 61 (1992) 3960–3965.ADSGoogle Scholar
  62. 62.
    Nonomura, Y. and M. Suzuki: Coherent anomaly in Kosterlitz-Thouless-type transition in the S = 1/2 X X Z chain at the ground state, J. Phys. Soc. Jpn. 62 (1993) 3774–3777 (L).ADSGoogle Scholar
  63. 63.
    Nonomura, Y. and M. Suzuki: Cluster-effective-field approximations in frustrated quantum spin systems: CAM analysis of Néel-dimer transition in the S = 1/2 frustrated X X Z chain at the ground state, J. Phys. A: Math. Gen. 27 (1994) 1127–1138.ADSGoogle Scholar
  64. 64.
    Nonomura, Y.: New finite-size-scaling analysis in ground-state phase transitions, J. Magn. Magn. Mater. 140–144 (1995) 1495–1496.Google Scholar
  65. 65.
    Oguchi, T. and H. Kitatani: Coherent-anomaly method applied to the quantum Heisenberg model, J. Phys. Soc. Jpn. 57 (1988) 3973–3978.ADSGoogle Scholar
  66. 66.
    Oguchi, T. and H. Kitatani: Coherent-anomaly method applied to the lattice obtained by the dual transformation in the Ising model, J. Phys. Soc. Jpn. 58 (1989) 3033–3036 (L).MathSciNetADSGoogle Scholar
  67. 67.
    Patrykiejew, A. and P. Borowski: Application of the Monte Carlo coherent-anomaly method to two-dimensional lattice-gas systems with further-neighbor interactions, Phys. Rev. B42 (1990) 4670–4676.ADSGoogle Scholar
  68. 68.
    Pelizzola, A. and A. Stella: Mean-field renormalization group for the boundary magnetization of strip clusters, J. Phys. A: Math. Gen. 26 (1993) 6747–6756.ADSGoogle Scholar
  69. 69.
    Pelizzola, A.: Boundary magnetization of a two-dimensional Ising model with inhomogeneous nearest-neighbor interactions, Phys. Rev. Lett. 73 (1994) 2643–2645.ADSGoogle Scholar
  70. 70.
    Šamaj, L. and M. Kolesík: Self-duality of the O(2) gauge transformation and the phase structure of vertex models, Physica A193 (1993) 157–168.ADSGoogle Scholar
  71. 71.
    Sardar, S. and K. G. Chakraborty: Coherent anomalies and critical singularities of the generalized Ising model, Physica A199 (1993) 154–164.ADSGoogle Scholar
  72. 72.
    Schmittmann, B and R. K. P. Zia: in Statistical Mechanics of Driven Diffusion Systems Phase Transitions and Critical Phenomena, (eds. C. Domb and J. L. Lebowitz) vol.17, p.16 (1995).Google Scholar
  73. 73.
    Suzuki, M.: New methods to study critical phenomena — Systematic cluster mean-field approach, and thermo field dynamics of interacting quantum systems, in Quantum Field Theory, ed. F. Mancini (North-Holland, Amsterdam, 1986) pp. 505–531.Google Scholar
  74. 74.
    Suzuki, M. and M. Katori: New method to study critical phenomena — Mean-field finite-size scaling theory, J. Phys. Soc. Jpn. 55 (1986) 1–4 (L).ADSGoogle Scholar
  75. 75.
    Suzuki, M.: Coherent anomalies and an asymptotic method in cooperative phenomena, Phys. Lett. A116 (1986) 375–381.ADSGoogle Scholar
  76. 76.
    Suzuki, M.: Skeletonization, fluctuating mean-field approximations and coherent anomalies in critical phenomena, Prog. Theor. Phys. Suppl. 87 (1986) 1–22.ADSGoogle Scholar
  77. 77.
    Suzuki, M.: Statistical mechanical theory of cooperative phenomena. I. General theory of fluctuations, coherent anomalies and scaling exponents with simple applications to critical phenomena, J. Phys. Soc. Jpn. 55 (1986) 4205–4230.ADSGoogle Scholar
  78. 78.
    Suzuki, M.: Nonlinear flucturations, separation of procedures, and linearization of processes, J. Stat. Phys. 49 (1987) 977–992.zbMATHADSGoogle Scholar
  79. 79.
    Suzuki, M., M. Katori and X. Hu: Coherent anomaly method in critical phenomena. I., J. Phys. Soc. Jpn. 56 (1987) 3092–3112.ADSMathSciNetGoogle Scholar
  80. 80.
    Suzuki, M.: Power-series CAM theory, J. Phys. Soc. Jpn. 56 (1987) 4221–4224 (L).ADSGoogle Scholar
  81. 81.
    Suzuki, M.: Continued-fraction CAM theory, J. Phys. Soc. Jpn. 57 (1988) 1–4 (L).ADSGoogle Scholar
  82. 82.
    Suzuki, M.: Asymptotics, self-similarity and coherent-anomaly method in cooperative phenomena, Sci. Form. 3 (1988) 43–56.zbMATHGoogle Scholar
  83. 83.
    Suzuki, M.: Scaling and CAM theory in far-from-equilibrium systems, in Dynamics of Ordering Processes in Condensed Matter, eds. S. Komura and H. Furukawa (Plenum Press, New York, 1988) pp. 23–28.Google Scholar
  84. 84.
    Suzuki, M.: CAM estimates of critical exponents of spin glasses and percolation, Phys. Lett. A127 (1988) 410–412.ADSGoogle Scholar
  85. 85.
    Suzuki, M.: Super-effective-field theory, general criterion of order parameters and exotic phase transitions, J. Phys. Soc. Jpn. 57 (1988) 683–686 (L).ADSGoogle Scholar
  86. 86.
    Suzuki, M.: Statistical mechanical theory of cooperative phenomena. II. Super-effective-field theory with applications to exotic phase transitions, J. Phys. Soc. Jpn. 57 (1988) 2310–2330.ADSGoogle Scholar
  87. 87.
    Suzuki, M.: Super-effective-field theory and coherent-anomaly method in cooperative phenomena, J. Stat. Phys. 53 (1988) 483–497.ADSGoogle Scholar
  88. 88.
    Suzuki, M.: Super-effective field theory and exotic phase transitions in spin systems, J. Phys. (France) Colloque C8 (1988) 1519–1524.Google Scholar
  89. 89.
    Suzuki, M.: Super-effective-field CAM theory of dynamical complexity, in Cooperative Dynamics in Complex Physical Systems, ed. H. Takayama (Springer-Verlag, Berlin, 1988) pp. 9–16.Google Scholar
  90. 90.
    Suzuki, M.: Canonical series of exactly solvable models for the CAM — Spontaneous broken symmetry of effective Hamiltonians based on the confluent transfer-matrix method—, J. Phys. Soc. Jpn. 58 (1989) 3642–3650.ADSGoogle Scholar
  91. 91.
    Suzuki, M.: Super-effective-field CAM theory of strongly correlated electron and spin systems, in Recent Progress in Many-Body Theories, Vol. 2, ed. Y. Avishai (Plenum Press, New York, 1990) pp. 277–289.Google Scholar
  92. 92.
    Suzuki, M.: Coherent-anomaly method and super-effective-field theory in magnetism, in New Trends in Magnetism, eds. M. D. Coutinho-Filho and S. M. Rezende (World Scientific, Singapore, 1990) pp. 304–318.Google Scholar
  93. 93.
    Suzuki, M.: New trends in the physics of phase transitions, in Evolutionary Trends in the Physical Sciences, eds. M. Suzuki and R. Kubo (Springer-Verlag, Berlin, 1991) pp. 141–162.Google Scholar
  94. 94.
    Suzuki, M., N. Hatano and Y. Nonomura: Canonicality of the double-cluster approximation in the CAM theory, J. Phys. Soc. Jpn. 60 (1991) 3990–3992 (L).ADSGoogle Scholar
  95. 95.
    Suzuki, M.: Possible CAM canonical series in quantum and classical Monte Carlo simulations, Phys. Lett. A158 (1991) 465–468.ADSGoogle Scholar
  96. 96.
    Suzuki, M.: Emerging broken symmetry in space and time, in Thermal Field Theories and Their Applications, eds. H. Ezawa, T. Arimitsu and Y. Hashimoto (Elsevier, Amsterdam, 1991), pp. 5–15.Google Scholar
  97. 97.
    Suzuki, M., N. Hatano and Y. Nonomura: Numerical CAM analysis of critical phenomena in spin systems, in Computational Approaches in Condensed-Matter Physics, eds. S. Miyashita, M. Imada and H. Takayama (Springer-Verlag, Berlin, 1992) pp. 187–192.Google Scholar
  98. 98.
    Suzuki, M.: Coherent-anomaly approach to critical phenomena — proposal of quantum effective-field theory, Trends in Stat. Phys. 1 (1994) 225–234.Google Scholar
  99. 99.
    Suzuki, M., K. Minami and Y. Nonomura: Coherent-anomaly method — Recent development, Physica A205 (1994) 80–100.ADSGoogle Scholar
  100. 100.
    Takayasu, M. and H. Takayasu: Application of the coherent anomaly method to percolation, Phys. Lett. A128 (1988) 45–48.ADSGoogle Scholar
  101. 101.
    Takayasu, H., M. Takayasu and T. Nakamura: A new approach to generalized diffusion limited aggregation models. The coherent anomaly method, Phys. Lett. A132 (1988) 429–431.ADSGoogle Scholar
  102. 102.
    Tanaka, G. and M. Kimura: Critical temperatures and mean-field critical coefficients for the Heisenberg model based on CVM, Int. J. Mod. Phys. B6 (1992) 2363–2374.ADSMathSciNetGoogle Scholar
  103. 103.
    Tanaka, K., T. Horiguchi and T. Morita: Coherent-anomaly analysis with cluster variation method for spin-pair correlation function of Ising model on square lattice, J. Phys. Soc. Jpn. 60 (1991) 2576–2587.MathSciNetADSGoogle Scholar
  104. 104.
    Tanaka, K., T. Horiguchi and T. Morita: Critical indices for the two-dimensional Ising model with nearest-neighbor and next-nearest-neighbor interactions, Phys. Lett. A165 (1992) 266–270.ADSGoogle Scholar
  105. 105.
    Tanaka, K., T. Horiguchi and T. Murita: Critical indices for the two-dimensional Ising model with nearest-neighbor and next-nearest-neighbor interactions. II. Strip cluster approximation, Physica A192 (1993) 647–664.ADSGoogle Scholar
  106. 106.
    Tanaka, K., T. Horiguchi and T. Morita: Coherent-anomaly analysis with cluster variation method for two-dimensional Ising model with nearest-neighbor and next-nearest-neighbor interactions, Prog. Theor. Phys. Suppl. 115 (1994) 221–235.ADSGoogle Scholar
  107. 107.
    Toda, M., R. Kubo and N. Saitô: Statistical physics I — Equilibrium statistical mechanics, 2nd ed. (Springer-Verlag, Berlin, 1992) pp. 167–168.zbMATHGoogle Scholar
  108. 108.
    Todo, S. and M. Suzuki: Effective exclusive volume for hard-core systems in the liquid region, J. Phys. Soc. Jpn. 63 (1994) 3552–3555 (L).ADSGoogle Scholar
  109. 109.
    Uzunov, D. I.: Introduction to the theory of critical phenomena — Mean field, fluctuations and renormalization (World Scientific, Singapore, 1993) p. 362.zbMATHGoogle Scholar
  110. 110.
    Wada, K. and N. Watanabe: Coherent-anomaly method calculation on the cluster variation method. I, J. Phys. Soc. Jpn. 58 (1989) 4358–4366.ADSGoogle Scholar
  111. 111.
    Wada, K. and N. Watanabe: The CAM calculation of critical exponent v by the cluster variation method, J. Phys. Soc. Jpn. 59 (1990) 2610–2613 (L).ADSGoogle Scholar
  112. 112.
    Wada, K., N. Watanabe and T. Uchida: Coherent anomaly method calculation on the cluster variation method. II. Critical exponents of bond percolation model, J. Phys. Soc. Jpn. 60 (1991) 3289–3297.ADSGoogle Scholar
  113. 113.
    Zheng, W. M.: Retrieval of the dimension for Feigenbaum's limiting set from low periods, Phys. Lett. A143 (1990) 362–364ADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Masuo Suzuki
    • 1
  1. 1.Department of PhysicsUniversity of TokyoTokyo

Personalised recommendations