Dissipative quantum mechanics. Metriplectic dynamics in action

  • Łukasz A. Turski
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)


The inherent linearity of quantum mechanics is one of the difficulties in developing a fully quantum theory of dissipative processes. Several microscopic and more or less phenomenological descriptions of quantum dissipative dynamics have been proposed in the past. Following the successful development of classical metriplectic dynamics — a systematic description of dissipative systems using a natural extension of symplectic dynamics — we discuss the possibility of a similar formulation for quantum dissipative systems. Particular attention is paid to the Madelung representation of quantum mechanics.


Dissipative System Spin Length SchrSdinger Equation Dimensional Phase Space Dissipative Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Gisin and M. Rigo, J. Phys. A28 (Math. Gen.), 7375 (1995).ADSMathSciNetGoogle Scholar
  2. 2.
    N. Gisin, J. Phys. A14 (Math. Gen.) 2259 (1981); Physica A111, 364 (1982).ADSMathSciNetGoogle Scholar
  3. 3.
    M. Razavy and A. Pimpale, Phys. Rep. 168, 307 (1988).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    A.O. Caldeira and A.J. Leggett, Ann. Phys. (NY) 149, 374 (1983).CrossRefADSGoogle Scholar
  5. 5.
    Ł.A. Turski, Metriplectic Dynamics of Complex Systems. in: Continuum Models and Discrete Systems, (Dijon, 1989). vol. 1 G.A. Maugin, ed. Longman, London (1990).Google Scholar
  6. 6.
    C.P. Enz and Ł.A. Turski, Physica 96A, 369 (1979).ADSGoogle Scholar
  7. 7.
    J.A. Hołyst and Ł.A. Turski, Phys. Rev. A45, 4123 (1992), cf. also: Quantum Dissipative Dynamics, Proc. of the 7-th Symposium on Continuous Models and Discrete Systems, edited by K.H. Anthony and H.-J. Wagner, Trans Tech Publications, Vermannsdorf (1993).Google Scholar
  8. 8.
    M. Olko and Ł.A. Turski, Physica 166A, 574 (1990)ADSGoogle Scholar
  9. 8a.
    cf. also in Nonlinear Phenomena in Solids, Liquids and Plasmas, J.A. Tuszynski and W. Rozmus eds. World Scientific, Singapore (1990). M. Olko, PhD thesis (unpublished) Warsaw University (1996).Google Scholar
  10. 9.
    L.S. Pontriagin, Continuous Groups, Moscow (1954) (in Russian); Grupy Topologiczne, PWN, Warszawa (1961) (in polish).Google Scholar
  11. 10.
    C.P. Enz, Foundations of Physics 24, 1281 (1994).CrossRefMathSciNetADSGoogle Scholar
  12. 11.
    M.D. Kostin, J. Chem. Phys. 57, 3589 (1972).CrossRefADSGoogle Scholar
  13. 12.
    A. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin (1985).Google Scholar
  14. 13.
    R. Balakrishnan and A.R. Bishop, Phys. Rev. B40, 9194 (1989)ADSGoogle Scholar
  15. 13a.
    R. Balakrishnan, J.H. Hołyst, and A.R. Bishop, J. Phys. (Condensed Matter) C2, 1869 (1990).CrossRefADSGoogle Scholar
  16. 14.
    M.A. Olko and Ł.A. Turski, Physica, A166, 575 (1990).ADSGoogle Scholar
  17. 15.
    Ł.A. Turski, Acta. Phys. Polon. A26, 1311 (1995).MathSciNetGoogle Scholar
  18. 16.
    Ł.A. Turski and J.S. Langer, Phys. Rev. A46, 53230 (1973); Phys. Rev. A22, 2189 (1980).Google Scholar
  19. 17.
    B. Kim, and G.F. Mazenko, J. Stat. Phys. 64, 631 (1991).zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 18.
    E. Madelung, Z. Phys. 40, 322 (1926).ADSGoogle Scholar
  21. 18a.
    For recent introduction to the Madelung formulation of quantum mechanics, cf. I. Białynicki-Birula, M. Cieplak, and J. Kamiński, Theory of Quanta, Oxford University Press, Oxford (1992).Google Scholar
  22. 19.
    A.N. Kaufman, Ł.A. Turski Phys. Lett. A120, 331 (1987).ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Łukasz A. Turski
    • 1
  1. 1.Center for Theoretical PhysicsPolish Academy of Sciences and School of ScienceWarszawaPoland

Personalised recommendations