Advertisement

Critical behaviour in non-integer dimension

  • Yurij Holovatch
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)

Abstract

A method for studying critical behaviour in non-integer space dimensions is discussed. The critical exponents of several models commonly used in the theory of phase transitions are calculated for the case of non-integer space dimension. The calculations are performed using a fixed-dimension field theoretical approach. The renormalization group functions in the Callan—Symanzik scheme are considered directly in non-integer dimensions. Perturbation theory expansions are resummed with the use of Padé-Borel transformation.

Keywords

Renormalization Group Ising Model Critical Exponent Critical Behaviour Hypercubic Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson and M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972).CrossRefADSGoogle Scholar
  2. 2.
    K.G. Wilson and J. Kogut, Phys. Rep. C12, 75 (1974).CrossRefADSGoogle Scholar
  3. 3.
    E. Brezin, J.C. Le Guillou and J. Zinn-Justin, in: Phase Transitions and Critical Phenomena, ed. C. Domb and M.S. Green (Academic Press, New York, 1975), Vol. 6, p.125Google Scholar
  4. 4.
    S.-K. Ma, Modern theory of critical phenomena. (Benjamin, Reading, MA, 1976).CrossRefGoogle Scholar
  5. 5.
    D.J. Wallace and R.K.P. Zia, Phys. Rev. Lett. 43, 808 (1979).CrossRefADSGoogle Scholar
  6. 6.
    D. Forster and A. Gabriunas, Phys. Rev. A23, 2627 (1981).ADSGoogle Scholar
  7. 7.
    D. Forster and A. Gabriunas, Phys. Rev. A24, 598 (1981).ADSGoogle Scholar
  8. 8.
    A.D. Bruce and D.J. Wallace, Phys. Rev. Lett. 47, 1743 (1981).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D.E. Khmelnitskii, Sov. Phys. JETF 68, 1960 (1975).Google Scholar
  10. 10.
    G. Grinstein and L. Luther, Phys. Rev. B13, 1329 (1976).ADSGoogle Scholar
  11. 11.
    S.L. Katz, M. Droz and J.D. Gunton, Phys. Rev. B15, 1597 (1977).ADSGoogle Scholar
  12. 12.
    J.C. Le Guillou and J. Zinn-Justin, J. Phys. (Paris) 48, 19 (1987).Google Scholar
  13. 13.
    S.G. Gorishny, S.A. Larin and F.V. Tkachov, Phys. Lett. A101 120 (1984).ADSGoogle Scholar
  14. 14.
    Y. Gefen and B. Mandelbrot, A. Aharony, Phys. Rev. Lett. 45 855 (1980).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    B. Bonnier, Y. Leroyer and C. Meyers, Phys. Rev. B37 5205 (1988).ADSGoogle Scholar
  16. 16.
    B. Bonnier, Y. Leroyer and C. Meyers, Phys. Rev. B40 8961 (1989).ADSGoogle Scholar
  17. 17.
    B. Bonnier and M. Hontebeyrie, J. Phys. (Paris) I1, 5205 (1991).Google Scholar
  18. 18.
    M.A. Novotny, Europhys. Lett. 17, 297 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Novotny, Phys. Rev. B46, 2939 (1992).ADSGoogle Scholar
  20. 20.
    M.A. Novotny, Preprint FSU-SCRI-92-111. (Florida State University, 1992).Google Scholar
  21. 21.
    B.B. Mandelbrot, Fractals: form, chance, and dimension. (W.H. Freeman and Co., San Francisco, 1977).zbMATHGoogle Scholar
  22. 22.
    B.B. Mandelbrot, The fractal geometry of nature (W.H. Freeman and Co., N.-Y., 1983).Google Scholar
  23. 23.
    P. Tomczak and W. Jezewski, Physica A209, 275 (1994).ADSGoogle Scholar
  24. 24.
    B. Hu, Phys. Rev. B33, 6503 (1986).ADSGoogle Scholar
  25. 25.
    Y. Wu and B. Hu, Phys. Rev. A35, 1404 (1987).ADSMathSciNetGoogle Scholar
  26. 26.
    G. Parisi, J. Stat. Phys. 23, 49 (1980).CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    D.J. Amit, Field theory, the renormalization group, and critical phenomena. (New York: Mc Graw-Hill Int. Book Co., 1978).Google Scholar
  28. 28.
    B.G. Nickel, D.I. Meiron and G.A. Baker Jr., Preprint, Univ.of Guelph Rep., (Guelph, 1977).Google Scholar
  29. 29.
    Yu. Holovatch and M. Shpot, J. Stat. Phys. 66, 867 (1992).zbMATHCrossRefADSGoogle Scholar
  30. 30.
    Yu. Holovatch, Saclay preprint, SPhT-92-123, (Saclay, 1992); Int. J. Mod. Phys. A8, 5329 (1993).Google Scholar
  31. 31.
    Yu. Holovatch and T. Krokhmalskii, J. Math. Phys. 35, 3866 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Yu. Holovatch, unpublished.Google Scholar
  33. 33.
    Yu. Holovatch, Theor. Math. Phys. (Moscow) 96, 482 (1993).MathSciNetGoogle Scholar
  34. 34.
    J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. B21, 3976 (1980)ADSGoogle Scholar
  35. 35.
    G.A. Baker Jr., B.G. Nickel and D.J. Meiron, Phys. Rev. B17, 1365 (1978).ADSGoogle Scholar
  36. 36.
    G. Jug, Phys.Rev. B27, 609 (1983).ADSGoogle Scholar
  37. 37.
    I.O. Mayer, A.I. Sokolov and B.N. Shalaev, Ferroelectrics, 95, 93 (1989).CrossRefGoogle Scholar
  38. 38.
    I.O. Mayer, J. Phys. A22, 2815 (1989).ADSGoogle Scholar
  39. 39.
    H. Stanley, Introduction to phase transitions and critical phenomena. (Clarendon press, Oxford, 1971).Google Scholar
  40. 40.
    L. Onsager, Phys. Rev. 65, 117 (1944)zbMATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    L. Schäfer, C. von Ferber, U. Lehr and B. Duplantier, Nucl. Phys. B374, 473 (1992).CrossRefADSGoogle Scholar
  42. 42.
    A.E. Filippov and A.V. Radievskii, Sov. Phys. JETF 102, 1899 (1992).Google Scholar
  43. 43.
    S.A. Breus and A.E. Filippov, Physica A192, 486 (1992).ADSGoogle Scholar
  44. 44.
    N.D. Mermin and P. Wagner, Phys. Rev. Lett. 17, 1133 (1966).CrossRefADSGoogle Scholar
  45. 45.
    P. Hohenberg, Phys. Rev. 158, 383 (1967).CrossRefADSGoogle Scholar
  46. 46.
    D. Cassi, Phys. Rev. Lett. 68, 3631 (1992).CrossRefADSGoogle Scholar
  47. 47.
    Yu.A. Izyumov and Yu.N. Skriabin, Statistical mechanics of magnetically ordered systems, (New York, Consultants Bureau 1988).Google Scholar
  48. 48.
    J.L. Cardy and H.W. Hamber, Phys. Rev. Lett. 45, 499 (1980).CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    M. Kac, T.N. Berlin, Phys. Rev. 86, 821 (1952).zbMATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    J.S.R. Chisholm, Math. Comp. 27, 841 (1973).zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Yu. Holovatch and T. Yavors'kii, unpublishedGoogle Scholar
  52. 52.
    G.A. Baker Jr and P. Graves-Morris, Padé approximants (Addison-Wesley Publ. Co., Reading, Mass., 1981).Google Scholar
  53. 53.
    A.B. Harris, J. Phys. C7, 1671 (1974)ADSGoogle Scholar
  54. 54.
    see chap. X in [4].Google Scholar
  55. 55.
    B.N. Shalaev, Fiz. Tverd. Tela. 30, 895 (1988); ibid. 31, 93 (1989).Google Scholar
  56. 56.
    C. Bervillier, Phys. Rev. B34, 8141 (1986).ADSGoogle Scholar
  57. 57.
    K.E. Newman and E.K. Riedel, Phys. Rev. B25, 264 (1982).ADSGoogle Scholar
  58. 58.
    C. Jayaprakash and H.J. Katz, Phys. Rev. B66, 3987 (1987).Google Scholar
  59. 59.
    B.N. Shalaev, Sov. Phys. JETF 73, 2301 (1977).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Yurij Holovatch
    • 1
  1. 1.Institute for Condensed Matter Physics of the Ukrainian Academy of SciencesLvivUkraine

Personalised recommendations