Advertisement

Review of the physics of high-temperature superconductors

  • Charles P. Enz
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)

Abstract

For a better appreciation of the revolutionary aspect of the discovery in 1986 of the first high-temperature superconductor, the main stations in the 80 years old history of superconductivity are revisited. It is emphasized that the first breakthrough in this history came only in its 5th decade when Bardeen, Cooper and Schrieffer succeded in formulating a microscopic theory of this phenomenon. The progress made in the following 3 decades then is described mentioning the names of Little, Ginzburg, Bednorz and Müller who were among the few physicists who had the optimism to consider another breakthrough possible. After Bednorz and Müller’s discovery, progress leaped forward and produced an avalanche of publications which can be faced only by being selective. Thus after presenting the main characteristics of the different cuprate families of the new superconductors the main theoretical models are presented, which all make explicit use of the fact that the strongly correlated mobile holes in the copper-oxygen layers carry most of the interesting physics. Some of the new ideas like the separation of spin and charge of the holes and the possible existence of a “spin liquid” instead of a Fermi liquid are considered. Also discussed are the main pairing mechanisms proposed to describe the superconducting state and, in particular, the alternative of s- versus d-wave symmetry. Finally, possible explanations of the strange linear resistivity as function of the temperature observed parallel to the layers in the normal state and the technical applications in the form of wires, squids and filters for medicine and the communications industry are reviewed.

Keywords

Fermi Liquid Spin Density Wave Spin Liquid Extended Hubbard Model Short Coherence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. London, Superfluids. Macroscopic Theory of Superconductivity (Dover, New York 1961), vol 1.Google Scholar
  2. 2.
    J. Bardeen, L. Cooper and J. Schrieffer, Phys. Rev. 108, 1175 (1957).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C.P. Enz, A Course on Many-Body Theory Applied to Solid-State Physics (World Scientific, Singapore, 1992).Google Scholar
  4. 4.
    E. Maxwell, Phys. Rev. 78, 477 (1950)CrossRefADSGoogle Scholar
  5. 4a.
    C. A. Reynolds et al., Phys. Rev. 78, 487 (1950)CrossRefADSGoogle Scholar
  6. 4b.
    H. Fröhlich, Phys. Rev. 79, 845 (1950).zbMATHCrossRefADSGoogle Scholar
  7. 5.
    G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954)CrossRefADSGoogle Scholar
  8. 5a.
    B. T. Matthias et al., Phys. Rev. 95, 1435 (1954).CrossRefADSGoogle Scholar
  9. 6.
    B. T. Matthias et al., Science 175, 1465 (1972).CrossRefADSGoogle Scholar
  10. 7.
    Ø. Fischer, Appl. Phys. 16, 1 (1978).CrossRefADSGoogle Scholar
  11. 8.
    F. Steglich et al., Phys. Rev. Lett. 43, 1892 (1979).CrossRefADSGoogle Scholar
  12. 9.
    D. Jérôme et al., J. Phys. Lett. 41, 397 (1980).ADSCrossRefGoogle Scholar
  13. 10.
    W. A. Little, Phys. Rev. A134, 1416 (1964).CrossRefADSGoogle Scholar
  14. 11.
    V. L. Ginzburg and D. A. Kirzhnits, eds. High-Temperature Superconductivity, p.1 (Consultants Bureau, New York 1982); see also Superconductivity, Superdiamagnetism, Superfluidity, ed. V. L. Ginzburg (MIR Publishers, Moscow 1987), p. 11.Google Scholar
  15. 12.
    J. G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986). See also Nobel Lectures 1987, Rev. Mod. Phys. 60, 585 (1988).CrossRefADSGoogle Scholar
  16. 13.
    C. W. Chu et al., Phys. Rev. Lett. 58, 908 (1987).CrossRefADSGoogle Scholar
  17. 14.
    K.A. Müller, Z. Physik B80, 193 (1990).ADSGoogle Scholar
  18. 15.
    W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).CrossRefADSGoogle Scholar
  19. 16.
    Physics Today, 46(7), 20 (1993).Google Scholar
  20. 17.
    Proc. Oberlech Workshop on High-T c Superconductors, ed. K.A. Müller and J.G. Bednorz, IBM J. Res. Develop. 33, no. 3, May 1989.Google Scholar
  21. 18.
    M. François et al., Solid State Communic. 63, 35 (1987).CrossRefADSGoogle Scholar
  22. 19.
    P. P. Edwards et al., Chemistry in Britain 23, 962.Google Scholar
  23. 20.
    L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987)CrossRefADSGoogle Scholar
  24. 20a.
    A.J. Freeman et al., Phys. Rev. Lett. 58, 1035 (1987).CrossRefADSGoogle Scholar
  25. 21.
    D. Vaknin et al., Phys. Rev. Lett. 58, 2802 (1987)CrossRefADSGoogle Scholar
  26. 21a.
    J.M. Transquada et al., Phys. Rev. Lett. 60, 156 (1988)CrossRefADSGoogle Scholar
  27. 21b.
    T.R. Thurston et al., Phys. Rev. Lett. 65, 263 (1990).CrossRefADSGoogle Scholar
  28. 22.
    M. Kato et al., Physica C152, 116 (1988).ADSGoogle Scholar
  29. 23.
    J. Schoenes, J. Karpinski, E. Kaldis, J. Keller and P. de la Mora, Physica C 166, 145 (1990).CrossRefADSGoogle Scholar
  30. 24.
    Int. Seminar on High Temp. Superconductivity (Dubna, 1989), eds. V.L. Aksenov, N.N. Bogolubov and N.M. Plakida (World Scientific, Singapore, 1989).Google Scholar
  31. 25.
    Earlier and Recent Aspects of Superconductivity (Erice, 1989), eds. J.G. Bednorz and K.A. Müller Springer Series in Solid-State Sciences 90 (Springer, Berlin, 1990, 1991).Google Scholar
  32. 26.
    N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133, 1307 (1966).CrossRefADSGoogle Scholar
  33. 27.
    P. W. Anderson, Science 235, 1196 (1987).CrossRefADSGoogle Scholar
  34. 28.
    S. Tang and J.E. Hirsch, Phys. Rev. B 39, 4548 (1989).CrossRefADSGoogle Scholar
  35. 29.
    F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).CrossRefADSGoogle Scholar
  36. 30.
    F.C. Zhang and T.M. Rice, Phys. Rev. B 41, 7243 (1990)CrossRefADSGoogle Scholar
  37. 30a.
    W. Stephan and P. Horsch, Phys. Rev. Lett. 66, 2258 (1991).CrossRefADSGoogle Scholar
  38. 31.
    S.E. Barnes, J. Phys. F 6, 1375 (1976)CrossRefADSMathSciNetGoogle Scholar
  39. 31a.
    P. Coleman, Phys. Rev. B 29, 3035 (1984).ADSCrossRefGoogle Scholar
  40. 32.
    Special Issue on High-Temperature Superconductivity, Physics Today 44(6)(1991).Google Scholar
  41. 33.
    C.G. Olson et al., Science 245, 731 (1989); Phys. Rev. B 42, 381 (1990); Phys. Rev. Lett. 65, 3056 (1990).CrossRefADSGoogle Scholar
  42. 34.
    Z.-X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993).CrossRefADSGoogle Scholar
  43. 35.
    A.J. Millis, H. Monien and D. Pines, Phys. Rev. B 42, 167 (1990).CrossRefADSGoogle Scholar
  44. 36.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).CrossRefADSGoogle Scholar
  45. 37.
    S.C. Zhang, Phys. Rev. Lett. 65, 120 (1990)CrossRefADSGoogle Scholar
  46. 37a.
    C.N. Yang and S.C. Zhang, Int. J. Mod. Phys. B 5, 977 (1991).ADSGoogle Scholar
  47. 38.
    T. Izuyama, J. Phys. Soc. Japan 56, 4247 (1987).CrossRefADSGoogle Scholar
  48. 39.
    A. Aharony et al., Phys. Rev. Lett. 60, 1330 (1988).CrossRefADSMathSciNetGoogle Scholar
  49. 40.
    C. P. Enz and Z. M. Galasiewicz, Solid State Communic. 66, 49 (1988).CrossRefADSGoogle Scholar
  50. 41.
    C.P. Enz, Helv. Phys. Acta 62, 122 (1989).Google Scholar
  51. 42.
    V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).CrossRefADSGoogle Scholar
  52. 43.
    J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).CrossRefADSGoogle Scholar
  53. 44.
    J. R. Schrieffer et al., Phys. Rev. Lett. 60, 944 (1988).CrossRefADSGoogle Scholar
  54. 45.
    Y. Iye, Int. J. Mod. Phys. B 3, 367 (1989).CrossRefADSGoogle Scholar
  55. 46.
    T. Schneider and H. Keller, Phys. Rev. Lett. 69, 3374 (1992); Physica C 207, 366 (1993); Int. J. Mod. Phys. B 8, 487 (1993).CrossRefADSGoogle Scholar
  56. 47.
    R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).CrossRefADSGoogle Scholar
  57. 48.
    N.E. Bickers, D.J. Scalapino and R.T. Scalettar, Int. J. Mod. Phys. B 1, 687 (1987)CrossRefADSGoogle Scholar
  58. 48a.
    N.E. Bickers, D.J. Scalapino and S.R. White, Phys. Rev. Lett. 62, 961 (1989).CrossRefADSGoogle Scholar
  59. 49.
    P. Monthoux and D. Pines, Phys. Rev. 47, 6069 (1993).ADSCrossRefGoogle Scholar
  60. 50.
    B. Goss Levi, Physics Today 465), 17 (1993) and 49(1), 19 (1996).CrossRefGoogle Scholar
  61. 51.
    R.C. Dynes, Solid State Commun. 92, 53 (1994)CrossRefADSGoogle Scholar
  62. 51a.
    J.R. Schrieffer, Solid State Commun. 92, 129 (1994).CrossRefADSGoogle Scholar
  63. 52.
    K.A. Müller, Nature 377, 133 (1995).CrossRefADSGoogle Scholar
  64. 53.
    Yong Ren, Ji-Hai Xu and C.S. Ting, Phys. Rev. Lett. 74, 3680 (1995).CrossRefADSGoogle Scholar
  65. 54.
    A. Bill, Distortive Elektron-Gitter-Wechselwirkung in Hochtemperatursupraleitern: Paarungsmechanismus, Gap-Anisotropie und Phononenrenormierung (ph.d. thesis, University of Stuttgart), Verlag Shaker (Aachen, 1995).Google Scholar
  66. 55.
    C.P. Enz, to appear in Phys. Rev. B, 1 August 1996.Google Scholar
  67. 56.
    K. Levin et al., Physica C 175, 449 (1991).CrossRefADSGoogle Scholar
  68. 57.
    Y. Iye, Int. J. Mod. Phys. B 3, 367 (1989).CrossRefADSGoogle Scholar
  69. 58.
    O. Entin-Wohlman and Y. Imry, Phys. Rev. B 45, 1590 (1992).CrossRefADSGoogle Scholar
  70. 59.
    S. Martin et al., Phys. Rev. B 41, 486 (1990).Google Scholar
  71. 60.
    D.E. Farrell et al., Phys. Rev. Lett. 63, 782 (1989).CrossRefADSGoogle Scholar
  72. 61.
    G. Triscone et al., Physica C 168, 40 (1990).CrossRefADSGoogle Scholar
  73. 62.
    N. Nagaosa and P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990).CrossRefADSGoogle Scholar
  74. 63.
    L.B. Ioffe and P.B. Wiegmann, Phys. Rev. Lett. 65, 653 (1990).CrossRefADSGoogle Scholar
  75. 64.
    D. Ihle, M. Kasner and N.M. Plakida, Z. Phys. B 52, 193 (1991)CrossRefADSGoogle Scholar
  76. 64a.
    D. Ihle and N.M. Plakida, Physica C 185–189, 1637 (1991); J. Magn. Mat. 104–107, 511 (1992). T. Moriya, Y. Takahashi and K. Ueda, J. Phys. Soc. Japan 59, 2905 (1990).CrossRefGoogle Scholar
  77. 65.
    G.A. Levin and K.F. Quader, Phys. Rev. B 46, 5872 (1992).CrossRefADSGoogle Scholar
  78. 66.
    B. Hensel, G. Grasso and R. Flükiger, Phys. Rev. B 51, 15456 (1995).CrossRefADSGoogle Scholar
  79. 67.
    G.B. Lubkin, Physics Today 48(3), 20 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Charles P. Enz
    • 1
  1. 1.Départment de Physique ThéoriqueUniversité de GenèveGeneva 4Switzerland

Personalised recommendations