Advertisement

The scaling theory of the integer quantum hall effect

  • Bodo Huckestein
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)

Abstract

A brief review is given of the present understanding of the transitions between integer quantized plateaus of the Hall conductivity in two-dimensional disordered systems in a strong magnetic field. The similarity to continuous thermodynamic phase transitions is emphasized. Results of numerical simulations for non-interacting electrons are presented and compared to experiment. The role of the Coulomb interactions at the integer quantum Hall transitions is studied.

Keywords

Strong Magnetic Field Landau Level Localization Length Quantum Hall Effect Hall Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).CrossRefADSGoogle Scholar
  2. 2.
    D.C. Tsui, H.L. Störmer and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).CrossRefADSGoogle Scholar
  3. 3.
    R.B. Laughlin, Phys. Rev. B 23, 5632 (1981).CrossRefADSGoogle Scholar
  4. 4.
    H. Aoki and T. Ando, Solid State Commun. 38, 1079 (1981)CrossRefADSGoogle Scholar
  5. 5.
    E. Abrahams, P.W. Anderson, D.C. Liciardello and V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).CrossRefADSGoogle Scholar
  6. 6.
    H.P. Wei, D.C. Tsui, M.A. Paalanen and A.M.M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).CrossRefADSGoogle Scholar
  7. 7.
    J.T. Chalker, J. Phys. C 20, L493 (1987).Google Scholar
  8. 8.
    A.M.M. Pruisken, in The Quantum Hall Effect (Ref. [10])edited by, Chap. 5, pp. 117–173.Google Scholar
  9. 9.
    B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).CrossRefADSGoogle Scholar
  10. 10.
    The Quantum Hall Effect, Graduate Texts in Contemporary Physics, edited by R.E. Prange and S.M. Girvin (Springer, Berlin, 1987).Google Scholar
  11. 11.
    M. Janßen, O. Viehweger, U. Fastenrath and J. Hajdu, Introduction to the Theory of the Integer Quantum Hall Effect (VCH, Weinheim, 1994).Google Scholar
  12. 12.
    T. Chakraborty and P. Pietiläinen, The Quantum Hall Effects, Vol. 85 of Springer Series in Solid-State Sciences, 2nd ed. (Springer, Heidelberg, 1995).Google Scholar
  13. 13.
    M. Mehta, Random Matrices and the Statistical Theory of Spectra (Academic Press, New York, 1965).Google Scholar
  14. 14.
    B. Huckestein and B. Kramer, Solid State Comm. 71, 445 (1989).CrossRefADSGoogle Scholar
  15. 15.
    H.A. Weidenmüller, Nucl. Phys. B 290 [FS20], 87 (1987).CrossRefADSGoogle Scholar
  16. 16.
    B. Mieck, Europhys. Lett. 13, 453 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    B. Mieck and H.A. Weidenmüller, Z. Phys. B 84, 59 (1991).CrossRefADSGoogle Scholar
  18. 18.
    B. Mieck, Z. Phys. B 90, 427 (1993).CrossRefADSGoogle Scholar
  19. 19.
    M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. Lebowitz (Academic Press, London, 1983), Vol. 8, pp. 146–266.Google Scholar
  20. 20.
    B.L. Altshuler, Pis'ma Zh. Eksp. Teor. Fiz. 41, 530 (1985), [JETP Lett. 41, 648 (1985)].ADSGoogle Scholar
  21. 21.
    P.A. Lee and A.D. Stone, Phys. Rev. Lett. 54, 1622 (1985).CrossRefADSGoogle Scholar
  22. 22.
    B. Huckestein, Physica A 167, 175 (1990).CrossRefADSGoogle Scholar
  23. 23.
    J.T. Chalker and P.D. Coddington, J. Phys. C 21, 2665 (1988).CrossRefADSGoogle Scholar
  24. 24.
    B. Huckestein, Europhysics Lett. 20, 451 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    B. Huckestein, Phys. Rev. Lett. 72, 1080 (1994).CrossRefADSGoogle Scholar
  26. 26.
    S. Koch, R.J. Haug, K. von Klitzing and K. Ploog, PHys. Rev. Lett. 67, 883 (1991).CrossRefADSGoogle Scholar
  27. 27.
    L.W. Engel, D. Shahar, Ç. Kurdak and D.C. Tsui, Phys. Rev. Lett. 71, 2638 (1993).CrossRefADSGoogle Scholar
  28. 28.
    F. Wegner, Z. Phys. B 36, 209 (1980).CrossRefADSGoogle Scholar
  29. 29.
    A. Efros and B. Shklovskii, J. Phys. C 8, L49 (1975). For a review see B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors, Vol. 45 of Springer Series in Solid-State Sciences (Springer, Heidelberg, 1984)Google Scholar
  30. 30.
    S.-R.E. Yang and A.H. MacDonald, Phys. Rev. Lett. 70, 4110 (1993).CrossRefADSGoogle Scholar
  31. 31.
    D.-H. Lee and Z. Wang, Phys. Rev. Lett. 76, 4014 (1996)CrossRefADSGoogle Scholar
  32. 32.
    S.-R.E. Yang, A.H. MacDonald and B. Huckestein, Phys. Rev. Lett. 74, 3229 (1995).CrossRefADSGoogle Scholar
  33. 33.
    B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437 (1990).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Bodo Huckestein
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations