Advertisement

Kinetic confinement of electrons in modulated semiconductor structures

  • M. Kubisa
  • W. Zawadzki
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)

Abstract

A new type of electron confinement in modulated semiconductor systems is proposed. The confinement occurs when the effective mass of electrons in the central region of the structure is higher than that in the outside regions. This results in a ‘kinetic well’ produced by the transverse free motion. The calculated density of confined states is similar but not identical to that of the potentially bound 2D states. It is shown that the presence of an external magnetic field parallel to the growth direction stabilizes and controls the kinetically confined states. The resulting levels are strongly nonlinear functions of magnetic field intensity. We discuss specific structures in which the kinetic confinement of electrons would be possible.

Keywords

Effective Mass Landau Level Magnetic Field Intensity Break Curve Potential Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando T and Mori S Surf. Sci. 113, 124 (1982).CrossRefADSGoogle Scholar
  2. 2.
    Bertho D, Boiron D, Simon A, Jouanin C and Priester C 1991 Phys. Rev. B44, 6118ADSGoogle Scholar
  3. 3.
    Bratina G, Sorba L, Antonini A, Biasol G and Franciosi A 1992 Phys. Rev. B45, 4528ADSGoogle Scholar
  4. 4.
    Doezema R E and Drew H D 1986 Phys. Rev. Lett. 57, 762CrossRefADSGoogle Scholar
  5. 5.
    Kubisa M and Zawadzki W 1993 Semicond. Sci. Technol. 8, S246; The present lecture is based on this paper.Google Scholar
  6. 6.
    Milanovi V, Tiapkin D and Ikoni Z 1986 Phys. Rev. B34, 7404ADSGoogle Scholar
  7. 7.
    Radantzev V F, Derybina T I, Zverev L P, Kulayev G I and Khomutova S S 1986 Zh. Exp. Teor. Fiz. 91, 1016 (Engl. transl. 1986 Sov. Phys.-JETP 64 598)ADSGoogle Scholar
  8. 8.
    Reilly E P 1989 Semicond. Sci. Technol. 4, 121CrossRefADSGoogle Scholar
  9. 9.
    Sasaki A 1984 Phys. Rev. B30, 7016ADSGoogle Scholar
  10. 10.
    Slinkman J, Zhang A and Doezema R E 1989 Phys. Rev. B39, 1251ADSGoogle Scholar
  11. 11.
    Tuffigo H, Magnea H, Mariette H, Wasiela A and Merle d'Aubigné Y 1991 Phys. Rev. B34, 14629ADSGoogle Scholar
  12. 12.
    Zhang A, Slinkman J and Doezema R E 1991 Phys. Rev. B44, 10752ADSGoogle Scholar
  13. 13.
    Zhang S and Kobayashi N 1992 Appl. Phys. Lett. 60, 883CrossRefADSGoogle Scholar
  14. 14.
    Zhang Y, Zhang A, Slinkman J and Doezema R E 1991 Phys. Rev. B44, 10749ADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Kubisa
    • 1
  • W. Zawadzki
    • 1
  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations