Skip to main content

Theory of dense hydrogen: Proton pairing

  • Conference paper
  • First Online:
Book cover From Quantum Mechanics to Technology

Part of the book series: Lecture Notes in Physics ((LNP,volume 477))

  • 160 Accesses

Abstract

Dense hydrogen, a dual Fermion system, possesses a Hamiltonian of high symmetry and especial simplicity. As a consequence of the latter its ground state energy satisfies general scaling conditions, independent of phase. Electron exchange is an important contributor, and its role in proton pairing (so evident at low densities) can be argued as a persistent feature. In the single particle description instabilities associated with band-gap closure can be seen as incipient charge density waves but in pair coordinates. This gives rise to a notion of higher pairing within which there can be an associated broken symmetry in electron density (consistent with the observed infrared activity). The persistence of exchange driven pairing under conditions where temperatures approach characteristic vibron energies is discussed in the context of recent reports of the metallization of hydrogen by dynamic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kohn and J. M. Luttinger, Phys. Rev. Lett 15, 524 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  2. Y. Takada, Phys. Rev. B 47, 5202 (1993).

    Article  ADS  Google Scholar 

  3. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 41, 6500 (1990).

    Article  ADS  Google Scholar 

  4. T. Kato, Commun. Pure Appl. Math 10, 151 (1957)

    Article  MATH  Google Scholar 

  5. J.C. Kimball, Phys. Rev. 7, 1648 (1973).

    Article  ADS  Google Scholar 

  6. A.E. Carlsson and N.W. Ashcroft, Phys. Rev. 25, 3474 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Kleinert, Fort. Phys. 26, 565 (1978)

    Article  Google Scholar 

  8. V.N. Popov, in Functional Integrals and Collective Excitations (Cambridge University Press, Cambridge, 1987).

    MATH  Google Scholar 

  9. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. Lett. 66, 2915 (1991).

    Article  ADS  Google Scholar 

  10. S.T. Weir, A.C. Mitchell, and W. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  11. See, for example, M. Hanfland, R.J. Hemley, and H.K. Mao, Phys. Rev. Lett. 70, 3760 (1993)

    Article  ADS  Google Scholar 

  12. L. Cui, N. Chen, and I.F. Silvera, Phys. Rev. B 51, 14987 (1995).

    Article  ADS  Google Scholar 

  13. W. Kolos, and L. Wolniewicz, J. Chem Phys. 49, 404 (1968).

    Article  ADS  Google Scholar 

  14. W. Kolos, and C.J.J. Roothan, Rev. Mod. Phys. 32, 219 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  15. J.C. Slater, in Quantum Theory of Molecules and Solids (McGraw Hill, New York, 1963).

    MATH  Google Scholar 

  16. C.O. Almbladh, U. von Barth, Z.D. Popovic, and M.J. Stott, Phys. Rev. B 14, 2250 (1976).

    Article  ADS  Google Scholar 

  17. K. Moulopoulos and N.W. Ashcroft (to be published)

    Google Scholar 

  18. A.C. Maggs and N.W. Ashcroft, Phys. Rev. Lett. 59, 113 (1987).

    Article  ADS  Google Scholar 

  19. C. Rapcewicz and N.W. Ashcroft, Phys. Rev. B 44, 4032 (1991).

    Article  ADS  Google Scholar 

  20. A. Ferraz and N.H. March, J. Phys. Chem. Solids 45, 627 (1984).

    Article  ADS  Google Scholar 

  21. M. Li, R. J. Hemley, and H. K. Mao, Bull. Am. Phys. Soc. 39, 336 (1994).

    Google Scholar 

  22. L. Pauling, Phys. Rev. 36, 430 (1930).

    Article  ADS  Google Scholar 

  23. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  24. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 45, 1151B(1992).

    Google Scholar 

  25. W. Kohn, Phys. Rev. Lett. 133A, 171(1964).

    ADS  Google Scholar 

  26. B. Edwards and N.W. Ashcroft (to be published).

    Google Scholar 

  27. L. Onsager, J. Phys. Chem., 43, 189 (1939).

    Article  Google Scholar 

  28. D.E. Ramaker, L. Kumar, and F.E. Harris, Phys. Rev. Lett. 34, 812 (1975).

    Article  ADS  Google Scholar 

  29. C. Friedli and N.W. Ashcroft, Phys. Rev. B 16, 662 (1977).

    Article  ADS  Google Scholar 

  30. T.W. Barbee, A. Garcia, M.L. Cohen, and J.L. Martins, Phys. Rev. Lett. 62, 1150 (1989).

    Article  ADS  Google Scholar 

  31. H. Nagara and T. Nakamura, Phys. Rev. Lett. 68, 2915 (1991).

    Google Scholar 

  32. E. Kaxiras and Z. Guo, Phys. Rev. B 49, 11822 (1994).

    Article  ADS  Google Scholar 

  33. E. Kaxiras, J. Broughton, and R.J. Hemley, Phys. Rev. Lett. 67, 1138 (1991).

    Article  ADS  Google Scholar 

  34. H. Chacham and S.G. Louie, Phys. Rev. Lett. 66, 64 (1991).

    Article  ADS  Google Scholar 

  35. N.F. Mott, Phil Mag 6, 287 (1961).

    Article  ADS  Google Scholar 

  36. N. W. Ashcroft, “Elementary Processes in Dense Plasmas”; S. Ichimaru and S. Ogata, Eds. (Addison Wesley, 1995), p. 251.

    Google Scholar 

  37. B. Edwards and N.W. Ashcroft, Europhysics Letters, to appear (1996).

    Google Scholar 

  38. D. Saumon and G. Chabrier, Phys. Rev. A 44, 5122 (1991)

    Article  ADS  Google Scholar 

  39. Phys. Rev. A 46, 2084 (1992).

    Google Scholar 

  40. B. Edwards and N.W. Ashcroft (to be published).

    Google Scholar 

  41. N.W. Ashcroft, Phys. Rev. B. 41, 10983 (1990).

    Article  Google Scholar 

  42. D.J. Stevenson and N.W. Ashcroft, Phys. Rev. A 9, 782 (1974).

    Article  ADS  Google Scholar 

  43. A. Louis and N.W. Ashcroft (to be published).

    Google Scholar 

  44. N.W. Ashcroft, Zeits. für Phys. Chemie. 156, 41 (1988).

    Google Scholar 

  45. N.W. Ashcroft, Physics World 8, 45 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zygmunt Petru Jerzy Przystawa Krzysztof Rapcewicz

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Ashcroft, N.W. (1996). Theory of dense hydrogen: Proton pairing. In: Petru, Z., Przystawa, J., Rapcewicz, K. (eds) From Quantum Mechanics to Technology. Lecture Notes in Physics, vol 477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106011

Download citation

  • DOI: https://doi.org/10.1007/BFb0106011

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61792-1

  • Online ISBN: 978-3-540-70724-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics