Theory of dense hydrogen: Proton pairing

  • N. W. Ashcroft
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 477)


Dense hydrogen, a dual Fermion system, possesses a Hamiltonian of high symmetry and especial simplicity. As a consequence of the latter its ground state energy satisfies general scaling conditions, independent of phase. Electron exchange is an important contributor, and its role in proton pairing (so evident at low densities) can be argued as a persistent feature. In the single particle description instabilities associated with band-gap closure can be seen as incipient charge density waves but in pair coordinates. This gives rise to a notion of higher pairing within which there can be an associated broken symmetry in electron density (consistent with the observed infrared activity). The persistence of exchange driven pairing under conditions where temperatures approach characteristic vibron energies is discussed in the context of recent reports of the metallization of hydrogen by dynamic methods.


Ground State Energy Hydrogen Molecule Charge Density Wave Metallic State Dense Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kohn and J. M. Luttinger, Phys. Rev. Lett 15, 524 (1965).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Y. Takada, Phys. Rev. B 47, 5202 (1993).CrossRefADSGoogle Scholar
  3. 3.
    K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 41, 6500 (1990).CrossRefADSGoogle Scholar
  4. 4.
    T. Kato, Commun. Pure Appl. Math 10, 151 (1957)zbMATHCrossRefGoogle Scholar
  5. 4a.
    J.C. Kimball, Phys. Rev. 7, 1648 (1973).CrossRefADSGoogle Scholar
  6. 5.
    A.E. Carlsson and N.W. Ashcroft, Phys. Rev. 25, 3474 (1982).ADSMathSciNetCrossRefGoogle Scholar
  7. 6.
    H. Kleinert, Fort. Phys. 26, 565 (1978)CrossRefGoogle Scholar
  8. 6a.
    V.N. Popov, in Functional Integrals and Collective Excitations (Cambridge University Press, Cambridge, 1987).zbMATHGoogle Scholar
  9. 7.
    K. Moulopoulos and N.W. Ashcroft, Phys. Rev. Lett. 66, 2915 (1991).CrossRefADSGoogle Scholar
  10. 8.
    S.T. Weir, A.C. Mitchell, and W. Nellis, Phys. Rev. Lett. 76, 1860 (1996).CrossRefADSGoogle Scholar
  11. 9.
    See, for example, M. Hanfland, R.J. Hemley, and H.K. Mao, Phys. Rev. Lett. 70, 3760 (1993)CrossRefADSGoogle Scholar
  12. 9a.
    L. Cui, N. Chen, and I.F. Silvera, Phys. Rev. B 51, 14987 (1995).CrossRefADSGoogle Scholar
  13. 10.
    W. Kolos, and L. Wolniewicz, J. Chem Phys. 49, 404 (1968).CrossRefADSGoogle Scholar
  14. 11.
    W. Kolos, and C.J.J. Roothan, Rev. Mod. Phys. 32, 219 (1960).CrossRefADSMathSciNetGoogle Scholar
  15. 12.
    J.C. Slater, in Quantum Theory of Molecules and Solids (McGraw Hill, New York, 1963).zbMATHGoogle Scholar
  16. 13.
    C.O. Almbladh, U. von Barth, Z.D. Popovic, and M.J. Stott, Phys. Rev. B 14, 2250 (1976).CrossRefADSGoogle Scholar
  17. 14.
    K. Moulopoulos and N.W. Ashcroft (to be published)Google Scholar
  18. 15.
    A.C. Maggs and N.W. Ashcroft, Phys. Rev. Lett. 59, 113 (1987).CrossRefADSGoogle Scholar
  19. 16.
    C. Rapcewicz and N.W. Ashcroft, Phys. Rev. B 44, 4032 (1991).CrossRefADSGoogle Scholar
  20. 17.
    A. Ferraz and N.H. March, J. Phys. Chem. Solids 45, 627 (1984).CrossRefADSGoogle Scholar
  21. 18.
    M. Li, R. J. Hemley, and H. K. Mao, Bull. Am. Phys. Soc. 39, 336 (1994).Google Scholar
  22. 19.
    L. Pauling, Phys. Rev. 36, 430 (1930).CrossRefADSGoogle Scholar
  23. 20.
    N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).CrossRefADSGoogle Scholar
  24. 21.
    K. Moulopoulos and N.W. Ashcroft, Phys. Rev. B 45, 1151B(1992).Google Scholar
  25. 22.
    W. Kohn, Phys. Rev. Lett. 133A, 171(1964).ADSGoogle Scholar
  26. 23.
    B. Edwards and N.W. Ashcroft (to be published).Google Scholar
  27. 24.
    L. Onsager, J. Phys. Chem., 43, 189 (1939).CrossRefGoogle Scholar
  28. 25.
    D.E. Ramaker, L. Kumar, and F.E. Harris, Phys. Rev. Lett. 34, 812 (1975).CrossRefADSGoogle Scholar
  29. 26.
    C. Friedli and N.W. Ashcroft, Phys. Rev. B 16, 662 (1977).CrossRefADSGoogle Scholar
  30. 27.
    T.W. Barbee, A. Garcia, M.L. Cohen, and J.L. Martins, Phys. Rev. Lett. 62, 1150 (1989).CrossRefADSGoogle Scholar
  31. 28.
    H. Nagara and T. Nakamura, Phys. Rev. Lett. 68, 2915 (1991).Google Scholar
  32. 29.
    E. Kaxiras and Z. Guo, Phys. Rev. B 49, 11822 (1994).CrossRefADSGoogle Scholar
  33. 30.
    E. Kaxiras, J. Broughton, and R.J. Hemley, Phys. Rev. Lett. 67, 1138 (1991).CrossRefADSGoogle Scholar
  34. 31.
    H. Chacham and S.G. Louie, Phys. Rev. Lett. 66, 64 (1991).CrossRefADSGoogle Scholar
  35. 32.
    N.F. Mott, Phil Mag 6, 287 (1961).ADSCrossRefGoogle Scholar
  36. 33.
    N. W. Ashcroft, “Elementary Processes in Dense Plasmas”; S. Ichimaru and S. Ogata, Eds. (Addison Wesley, 1995), p. 251.Google Scholar
  37. 34.
    B. Edwards and N.W. Ashcroft, Europhysics Letters, to appear (1996).Google Scholar
  38. 35.
    D. Saumon and G. Chabrier, Phys. Rev. A 44, 5122 (1991)CrossRefADSGoogle Scholar
  39. 35a.
    Phys. Rev. A 46, 2084 (1992).Google Scholar
  40. 36.
    B. Edwards and N.W. Ashcroft (to be published).Google Scholar
  41. 37.
    N.W. Ashcroft, Phys. Rev. B. 41, 10983 (1990).CrossRefGoogle Scholar
  42. 38.
    D.J. Stevenson and N.W. Ashcroft, Phys. Rev. A 9, 782 (1974).CrossRefADSGoogle Scholar
  43. 39.
    A. Louis and N.W. Ashcroft (to be published).Google Scholar
  44. 40.
    N.W. Ashcroft, Zeits. für Phys. Chemie. 156, 41 (1988).Google Scholar
  45. 41.
    N.W. Ashcroft, Physics World 8, 45 (1995).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • N. W. Ashcroft
    • 1
    • 2
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaU. S. A.
  2. 2.New Zealand Institute for Industrial ResearchLower Hutt

Personalised recommendations