Skip to main content

New developments in the application of inverse scattering to target recognition and remote sensing

  • Conference paper
  • First Online:
  • 1195 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 486))

Abstract

Various approaches to the solution of the inverse scattering problem are discussed here, and illustrated by selected examples. Inverse scattering, having originated with quantum mechanical scattering problems, has more recently become of interest in acoustic and electromagnetic areas, in geophysics as well as in oceanography. These topics will be described here both based on general approaches, or more specifically as based on the use of target resonances, or of surface waves on the target.

Visiting Professor into 1 and 3

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. C. Sabatier, “Asymptotic properties of the potentials in the inverse scattering problem at fixed energy”, J. Math. Phys. 7, 1515–1531, (1966).

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Chadan and P. C. Sabatier, Inverse Problems of Quantum Scattering Theory, 2nd ed., Springer Verlag, Berlin, Heidelberg and New York (1989).

    Google Scholar 

  3. P. C. Sabatier, “Exotics of the Schrödinger Problem on the line”, in Quantum Inversion Theory and Applications (H. V. Geramb, ed.), Springer Verlag, Berlin, Heidelberg and New York (1994).

    Google Scholar 

  4. A. G. Rejpar, A. A. Ksinski, and L. J. White, “Object identification from multi-frequency radar returns”, Radio Electron. Eng. 45, 161–167, (1975).

    Article  ADS  Google Scholar 

  5. D. L. Moffat and R. K. Mains, “Detection and discrimination of radar targets”, IEEE Trans. Antennas Propagat., AP-23, 358–367, (1975).

    Article  ADS  Google Scholar 

  6. J. D. Young, “Radar imaging from ramp response signatures”, IEEE Trans. Antennas Propagat., AP-24, 276–282, (1976).

    Article  ADS  Google Scholar 

  7. See, e.g., J. C. d'Arnaud Gerkens, Foundation of Exploration Geophysics, Elsevier, Amsterdam (1989).

    Google Scholar 

  8. M. T. Taner, Long Period Multiples and their Suppression, Seiscom Data, Inc., Technical Report (1975).

    Google Scholar 

  9. R. Fiorito, W. Madigosky, and H. Überall, “Acoustic resonances and the determination of the material parameters of a viscous fluid layer”, J. Acoust. Soc. Am. 69, 897–903, (1981).

    Article  MATH  ADS  Google Scholar 

  10. A. Nagl, H. Überall, and W. R. Hoover, “Resonances in acoustic bottom reflection and their relation to the ocean bottom properties”, IEEE Trans. Geosc. Rem. Sensing GE-20, 332–337, (1982).

    Article  ADS  Google Scholar 

  11. J. D. Alemar, P. P. Delsanto, E. Rosario, A. Nagl, and H. Überall, “Spectral analysis of the scattering of acoustic waves from a fluid cylinder III: Solution of the inverse scattering problem”, Acustica 61, 14–20, (1986).

    MATH  Google Scholar 

  12. O. Lenoir, J. L. Izbicki, P. Rembert, G. Maze, and J. Ripoche, “Acoustic scattering and inverse problem: Determination of physical parameters of a multilayered structure”, Inverse Prob. 7, 369–378, (1991).

    Article  ADS  Google Scholar 

  13. P. P. Delsanto, J. D. Alemar, E. Rosario, A. Nagl, and H. Überall, “Spectral analysis of the scattering of elastic waves from a fluid-filled cylinder”, Materials Eval. 46, 1000–1005, (1988).

    ADS  Google Scholar 

  14. V. A. Dubrovskii and V. S. Morochnik, “The nonstationary scattering of elastic waves on a spherical inclusion”, Izvestiya, Earth Physics 25, 87–93, (1989), in Russian.

    MathSciNet  MATH  Google Scholar 

  15. D. Colton and R. Kress, Inverse acoustic and electromagnetic theory, Springer Verlag, Berlin, Heidelberg and New York, (1992).

    MATH  Google Scholar 

  16. M. Bertero and E. R. Pike (eds.), Inverse Problems in Scattering and Imaging, Adam Hilger, Bristol (1992).

    MATH  Google Scholar 

  17. K. J. Langenberg, “Introduction to the Special Issue on Inverse Problems”, Wave Motion 11, 99–112, (1989).

    Article  MATH  Google Scholar 

  18. A. Kirsch (ed.), Special Issue on Inverse Problems in Scattering Theory, J. Comp. Appl. Math. 42, 1–155, (1992).

    Google Scholar 

  19. S. K. Datta (ed.), Elastic Wave Propagation and Ultrasonic Nondestructive Evaluation, Elsevier, Amsterdam (1990).

    MATH  Google Scholar 

  20. P. C. Sabatier (ed.), Basic Methods of Tomography and Inverse Problems, Adam Hilger, Bristol (1986).

    Google Scholar 

  21. W. Tabbara, B. Duchêne, Ch. Pichot, D. Lesselier, L. Chammeloux, and N. Joachimowicz, “Diffraction Tomography: Contribution to the analysis of some applications in microwaves and ultrasonics”, Inverse Prob., 4, 305–331, (1988)

    Article  ADS  Google Scholar 

  22. W. M. Boerner et al., (eds.), Inverse Methods in Electromagnetic Imaging, D. Reidel, Dordrecht (1985).

    Google Scholar 

  23. W. M. Boerner and H. Überall (eds.), Radar Target Imaging, Springer Verlag, Berlin, Heidelberg and New York (1994).

    MATH  Google Scholar 

  24. R. Burridge, “The Gelfand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse response problems”, Wave Motion 2, 305–323, (1980).

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Colton and R. Kress, Integral Equation Methods in Scattering Theorv, John Wiley, New York, (1983).

    Google Scholar 

  26. P. J. Moser and H. Überall, “Complex eigenfrequencies of axisymmetric perfectly conducting bodies: Radar spectroscopy”, Proc. IEEE, 71, 171–172, (1983).

    Article  ADS  Google Scholar 

  27. H. Überall, P. J. Moser, J. D. Murphy, A. Nagl, G. Igiri, J. V. Subrahmanyam, G. C. Gaunaurd, D. Brill, P. P. Delsanto, J. D. Alemar and E. Rosario, “Electromagnetic and acoustic resonance scattering theory”, Wave Motion, 5, 307–329, (1983).

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Überall and A. Guran, “Inverse scattering based on the resonances of the target”, in Acoustic Interactions with Submerged Elastic Structures (Series on Stability, Vibration, and Control of Structures, 5) A. Guran et al. (eds.), World Scientific, Singapore and New Jersey, Vol. 2 (1996).

    Google Scholar 

  29. P. C. Sabatier, “From exact to approximate inverse scattering theory”, in Electromagnetic Interactions (Series on Stability, Vibration, and Control of Structures, 5), A. Guran et al. (eds.), World Scientific, Singapore and N. J. (1996).

    Google Scholar 

  30. C. E. Baum, “On the singularity expansion method for the solution of electromagnetic interaction problems”, Interaction Note 88, Air Force Weapons Lab., Kirland Air Force Base, Albuquerque, NM 1971.

    Google Scholar 

  31. A. J. Berni, “Target identification by natural resonance estimation”, IEEE Trans. Aerosp. Elec. Syst. AES-11, 147–154, (1975).

    Article  ADS  Google Scholar 

  32. M. L. Van Blaricum and R. Mittra, “A technique for extracting the poles and residues of a system directly from its transient response”, IEEE Trans. Antennas Propagat. AP-23, 777–781, (1975).

    Article  ADS  Google Scholar 

  33. D. G. Ramm, “Extraction of resonances from transient fields,” IEEE Trans. Antennas Propagat. AP-33, 223–226, (1985).

    Article  ADS  Google Scholar 

  34. M. A. Morgan, “Scatterer discrimination based upon natural resonance annihilation”, J. Electrom. Waves Applic. 2, 481–502 (1988).

    Article  ADS  Google Scholar 

  35. D. G. Dudley, “Progress in identification of electromagnetic systems,” IEEE Antennas Propagat. Soc. News lett., 30, 5–11, (1988).

    Google Scholar 

  36. C. E. Baum, E. J. Rothwell, K. M. Chen, and D. P. Nyquist, “The Singularity Expansion Method and its application to target identification”, Proc. IEEE, 79, 1481–1492, (1991).

    Article  ADS  Google Scholar 

  37. L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering”, J. Acoust. Soc. Am., 63, 723–731, (1978).

    Article  ADS  MATH  Google Scholar 

  38. H. Überall (ed.), Acoustic Resonance Scattering, Gordon and Breach, New York, (1992).

    Google Scholar 

  39. H. Überall, G. Maze, and J. Ripoche, “Experiments and analysis of soundinduced structural vibrations”, in Wave Motion, Intelliqent Structures, and Nonlinear Mechanics (Series on Stability, Vibration, and Control of Structures, 1), A. Guran and D. J. Inman (eds.), World Scientific, Singapore and New Jersey (1995).

    Google Scholar 

  40. N. GESPA, La Diffusion Acoustique (B. Poirée, ed.), Editions CEDOCAR, Paris, (1987).

    Google Scholar 

  41. A. Derem, “Relations entre les formations des ondes de surface et l'apparition de résonances dans la diffusion acoustique”, Revue du CETHEDEC 58, 43–79, (1979).

    MATH  Google Scholar 

  42. See, e.g., A. Gérard and H. Überall, “Generalized Debye series for acoustic scattering from objects of separable geometric shape”, preprint.

    Google Scholar 

  43. H. Überall, A. Gérard, A. Guran, J. Duclos, M. El Hocine Khelil, X. L. Bao, and P. K. Raju, “Acoustic scattering resonances: relation to external and internal surface waves”, Appl. Mech. Rev., 49, S63–S71, (1996).

    Article  Google Scholar 

  44. J. D. Kaplunov, E. V. Nol'de, and N. D. Veksler, “Determination of parameters of elastic layer by measured dispersion curves of zero-order Lamb-type waves”, Proc. Estonian Acad. Sci. Phys. Math., 41, 39–48, (1992).

    Google Scholar 

  45. M. S. Choi, J. S. Joo, and J. P. Lee, “Evaluation of a nuclear fuel rod by ultrasonic resonance scattering”, in New Perspectives on Problems in Classical and Quantum Mechanics, A. W. Saenz and P. P. Delsanto (eds.), Gordon and Breach, New York (1996).

    Google Scholar 

  46. P. Flandrin, J. Sageloli, J. P. Sessarego, and M. Zakharia, “Application of time-frequency analysis to the characterization of surface waves on elastic targets,” Acoust. Lett., 10, 23–28, (1986).

    Google Scholar 

  47. M. Bonnet, “A numerical investigation for a source inverse problem in linear acoustics”, J. Acoustique, 4, 307–334, (1991).

    Google Scholar 

  48. A. Tikhonov and V., Arsenine, Méthodes de Résolution de Problèmes Mal Posés, Editions Mir (1976).

    Google Scholar 

  49. A. Tarantola, Inverse Problem Theory, Elsevier, Amsterdam (1987).

    MATH  Google Scholar 

  50. W. Tobocman, “Application of wavelet analysis to inverse scattering”, in Acoustic Interactions with Submerqed Elastic Structures (Series on Stability, Vibration, and Control of Structures, 5), A. Guran et al. (eds.), World Scientific, Singapore and New Jersey, Vol. 1, (1996).

    Google Scholar 

  51. S. He and S. Ström, “The electromagnetic inverse problem in the time domain for a dissipative slab and a point source using invariant imbedding: Reconstruction of the permittivity and conductivity”, J. Comp. Appl. Math., 42, 137 (1992).

    Article  MATH  Google Scholar 

  52. G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation I, II”, J. Math. Phys. 27, 1667–1683, (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. A. G. Tijhuis, “Iterative determination of permittivity and conductivity profiles of a dielectric slab in the time domain”, IEEE Trans. Antennas Propagat., AP-29, 239 (1981).

    Article  ADS  Google Scholar 

  54. M. Mortaki, B. Chenni, J. Duclos, and M. Leduc, “Transmission coefficient and acoustical parameters of polyvinylidene flouride film”, Proceed. European Conf. on Underwater Acoustics (M. Weydert, ed.), Luxemburg, Sept. 1992, Elsevier, London and New York, 189–192, (1992).

    Google Scholar 

  55. M. Mortaki, B. Chenni, J. Duclos, and M. Leduc, “The Newton-Raphson and Conjugate Gradient algorithms for the acoustic characterization of thin film”, Proceed. Ultrasonics International 93, Vienna, Austria, June 1993, Butterworth, London, 827–830, (1993).

    Google Scholar 

  56. M. Mortaki, B. Chenni, J. Duclos, and M. Leduc, “Characterization of layers or films by an immersion method and estimation of the imprecision of the evaluated parameters”, Proceed. Second European Conference on Underwater Acoustics (L. BjØrnØ, ed.), European Commission, 443–448, (1994).

    Google Scholar 

  57. L. BjØrnØ, J. S. Papadakis, P. J. Papadakis, J. Sageloli, J. P. Sessarego, S. Sun, and M. I. Taraoudakis, “Identification of seabed data from acoustic reflections: Theory and experiment”, Acta Acustica 2, 359–374, (1994).

    Google Scholar 

  58. S. D. Rajan, J.F. Lynch, and G. V. Frisk, “Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water”, J. Acoust. Soc. Am., 82, 998–1017, (1987).

    Article  ADS  Google Scholar 

  59. P. B. Ryan, R. L. Barr, and H. D. Todd, “Simplex techniques for non-linear optimization”, Analyt. Chemistry, 52, 1460–1467, (1980).

    Article  Google Scholar 

  60. R. Prony, “Essai expérimental et analytique, etc.”, Paris, J. de l'Ecole Polytechnique 1, cahier 2, 24–76, (1795).

    Google Scholar 

  61. A. Nagl, H. Überall, and K. B. Yoo, “Acoustic Exploration of ocean floor properties based on the ringing of sediment layer resonances”, Inverse Prob., 1, 99–110, (1985).

    Article  MATH  ADS  Google Scholar 

  62. O. Lenoir, J. L. Izbicki, P. Rembert, G. Maze, and J. Ripoche, “Acoustic scattering from an immersed plane multilayer: Application to the inverse problem”, J. Acoust. Soc. Am. 91, 601–612, (1992).

    Article  ADS  Google Scholar 

  63. S. J. Hughes, D. D. Ellis, D. M. F. Chapman, and P. R. Staal, “Low-frequency acoustic propagation loss in shallow water over hard-rock seabeds covered by a thin layer of elastic-solid sediment”, J. Acoust. Soc. Am. 88, 283–297, (1990).

    Article  ADS  Google Scholar 

  64. See, e.g. D. L. Folds and C. D. Loggins, “Transmission and reflection of ultrasonic waves in layered media”, J. Acoust. Soc. Am., 62, 1102–1109, (1977).

    Article  ADS  MATH  Google Scholar 

  65. A. Gérard, “Diffraction d'ondes de cisaillement par une sphère élastique”, C. R. Acad. Sci. Paris, 278, 1055–1057, (1974).

    MATH  Google Scholar 

  66. H. Überall, L. R. Dragonette, and L. Flax, “Relation between creeping waves and normal modes of vibration of a curved body”, J. Acoust. Soc. Am., 61, 711–715, (1977).

    Article  ADS  Google Scholar 

  67. P. B. Nagy M. Blodgett, and M. Golis, “Weephole inspection by circumferential creeping waves”, NDT&E International, 27, 131–142, (1994).

    Article  Google Scholar 

  68. U. Kawald, C. Desmet, W. Lauriks, C. Glorieux, and J. Thoen, “Investigation of the dispersion relations of surface acoustic waves propagating on a layered cylinder”, J. Acoust. Soc. Am., 99, 926–930, (1996).

    Article  ADS  Google Scholar 

  69. J. Pouliquen, A. Defebrve, and B. Chenni, “Velocity dispersion of Rayleigh waves on chromium-plated steel”, Proceed. 12th International Congress on Acoustics, Toronto, Canada, July 1986, 2, G5-2., (1986)

    Google Scholar 

  70. A. Defebvre, J. Pouliquen, and L. M. Moukala, “Caracterisation de milieux plans stratifiés par ondes de Stoneley-Scholte”, Rapport de synthèse, Faculté Libre des Sciences, Laboratoire d'Acoustique-Ultrasons, Lille, Oct. 1989.

    Google Scholar 

  71. A. Defebvre, J. Pouliquen, and L. M. Mukala, “Contribution to Sea-Botto characterization from Stoneley-Scholte waves celerity dispersion in special cases of media having linear sound celerity profiles”, Proceed. Ultrasonics International 93, Vienna, Austria, June 1993, Butterworth, London, 591–594, (1993).

    Google Scholar 

  72. J. Guilbot and M. Zakharia, “Caractérisation d'un modèle de milieu sédimentaire marin par étude de la dispersion d'une onde d'interface”, J. de Physique IV, Colloque C1, suppl. J. de Physique III, vol. 2, C1-845-848, (1992); J. Guilbot and M. E. Zakharia “Tank experiments on a sediment small-scale model (continuously layeréd medium): Profile inversion via surface acoustic waves”, Proceed. European Conf. on Underwater Acoustics (M. Weydert, ed.), Luxembourg, Sept. 1992, Elsevier, London and New York, 543–546, (1992).

    Google Scholar 

  73. M. E. Zakharia, F. Magand, J. Sageloli and J. P. Sessarego, “Time-frequency approaches for sonar target descriptions: Application to fisheries”, NATO ASI on Acoustic Signal Processing for Ocean Exploration, Madeira, Aug. 1992. NATO, 541–546, (1993).

    Google Scholar 

  74. R. R. Weyker and D. G. Dudley, “Identification of resonances on an acoustically rigid sphere”, IEEE J. of Ocean Engin. OE-12, 317–326, (1987).

    Article  Google Scholar 

  75. D. M. Goodman and D. G. Dudley, “An output error model and algorithm for electromagnetic system identification”, Circuits Sys. Sig. Process, 6, 471–505, (1987).

    Article  MATH  Google Scholar 

  76. V. Sabio, “Spectral correlation of wideband target resonances”, SPIE’ 95 Conference, Orlando, FL, in Signal Processing, Sensor Fusion, and Target Recognition IV (I. Kadar and V. Libby, eds.), SPIE Vol., 2484, 567–573, (1995); V. Sabio”, Spectral correlation of wideband target resonances”, SPIE’ 96 Conference, Orlando, FL, in Algorithms for synthetic Aperture Radar Imagery III (E. G. Zelnio and D. J. Douglass, eds.), SPIE Vol., 2757, 145–151, (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guy Chavent Pierre C. Sabatier

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Gérard, A., Guran, A., Maze, G., Ripoche, J., Überall, H. (1997). New developments in the application of inverse scattering to target recognition and remote sensing. In: Chavent, G., Sabatier, P.C. (eds) Inverse Problems of Wave Propagation and Diffraction. Lecture Notes in Physics, vol 486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105770

Download citation

  • DOI: https://doi.org/10.1007/BFb0105770

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62865-1

  • Online ISBN: 978-3-540-68713-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics