Skip to main content

Planetary rings — nonequilibrium systems in space

  • Distributed Systems
  • Conference paper
  • First Online:
Stochastic Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 484))

Abstract

Planetary rings consist of myriads of granular particles in nearly circular orbits around the giant planets. Unlike assemblies of dense packed granules under terrestrial conditions, the equilibrium of the centrifugal and the gravitational force of the central body (planet) causes the particle ensemble to move almost freely like molecules in gases or fluids. Although this force balance is crucial for the dynamics of planetary rings, their unique wealth of structures is mainly determined by the dissipative character of inter-particle collisions. E. g. the extreme flatness of the rings - the ratio between the thickness and the tangential extend is about 10−6 ... 10−7 (for comparison, that of a razor blade is 1000 ... 10,000 larger) - is the consequence of a “quasi” equilibrium between viscous heating and the collisional “cooling” both caused by imperfect elastic collisions. In the same context, the very existence of stationary density waves, wakes, which are generated by the gravity of the numerous satellites of the “Giants”, as well as granular clustering as transient phenomenon are the result of the nonelastic collisions. Using new models of the collisional dynamics, we demonstrate the dynamical evolution of these structures by numerical N-body “experiments”. The main results of these computations are: granular clustering is not stable under conditions in a gravitational field of a planet, and structures generated by the gravity of satellites are only stationary if dissipation in the rings is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki S. and Tremaine S., The dynamics of dense particle disks. ICARUS 65, 83 (1986).

    Article  ADS  Google Scholar 

  • Bak P., Tang C. and Wiesenfeld K., Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  • Bogolyubov N., In Studies in statistical mechanics, (Uhlenbeck G. E., and Boer J., eds.), North-Holland, Amsterdam, (1962).

    Google Scholar 

  • Boltzmann L., Vorlesungen über Gastheorie. Bd. 2, Berlin (1912), or Lectures on gas theory. Univ. of California Press, Berkeley and Los Angeles (1964).

    Google Scholar 

  • Brilliantov N. V., Spahn F., Hertzsch J.-M., and Pöschel Th., Model for collisions in granular gases. Phys. Rev. E 53, 5382 (1996)

    Article  ADS  Google Scholar 

  • Buchholtz V., Pöschel Th. and Tillemans H. J., Simulation of rotating drum experiments using noncircular particles. Physica A 217, 199 (1995).

    Article  ADS  Google Scholar 

  • Goldhirsch I. and Zanetti G., Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619 (1993).

    Article  ADS  Google Scholar 

  • Herrmann H. J., Die wunderbare Welt der Schüttgüter. Phys. Bl. 51, 1083 (1995).

    ADS  Google Scholar 

  • Hertz H.: Ueber die Berührung fester elastischer Körper, J. f. reine u. angew. Mathematik 92, 156 (1881).

    Google Scholar 

  • Hertzsch J.-M., Spahn F., and Brilliantov N. V., On low-velocity collisions of viscoelastic particles. J. Physique II (France) 5, 1725 (1995).

    Article  ADS  Google Scholar 

  • Hopkins M. A. and Louge M. Y., Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 47 (1991).

    Article  ADS  Google Scholar 

  • Jaeger H. M. and Nagel S. R., Physics of the granular state Science 255, 1523 (1992).

    Article  ADS  Google Scholar 

  • Landau L. D. and Lifschitz E. M., Lehrbuch der theoretischen Physik, Bd. I “Mechanik”. Akademie Verlag, Berlin (1979).

    Google Scholar 

  • Landau L. D. and Lifschitz E. M., Lehrbuch der theoretischen Physik, Bd. X “Physikalische Kinetik”. Akademie Verlag, Berlin (1983).

    Google Scholar 

  • Lin D. N. C. and Bodenheimer P., On the stability of Saturn's rings. The Astrophysical Journal 248, L83–L86 (1981).

    Article  ADS  Google Scholar 

  • McNamara S. and Young W. R., Inelastic collapse in two dimensions. Phys. Rev. E 50, R28 (1994).

    Google Scholar 

  • Resibois P., and de Leener M., Classical kinetic theory of fluids. Wiley, New York (1976).

    MATH  Google Scholar 

  • Savage S. B., Instabilty of unbounded uniform granular shear flow. J. Fluid Mech. 241, 109 (1992).

    Article  MATH  ADS  Google Scholar 

  • Showalter M. R., Cuzzi J. N., Marouf E. A., and Esposito L. W., Satellite “wakes” and the orbit of the Encke gap moonlet. Icarus 66, 297 (1986).

    Article  ADS  Google Scholar 

  • Spahn F., Greiner J. and Schwarz U., Moonlets in Saturns rings. Adv. Space Res. 12, 141 (1992).

    Article  ADS  Google Scholar 

  • Spahn F., Scholl H., and Hertzsch J.-M.: Structures in planetary rings caused by embedded moonlets. Icarus 111, 514 (1994).

    Article  ADS  Google Scholar 

  • Spahn F., Hertzsch J.-M., and Brilliantov N. V., The role of particle collisions for the dynamics in planetary rings. Chaos, Solitons, and Fractals 5, 1945 (1995).

    Article  ADS  Google Scholar 

  • Spahn F., Schwarz U., and Kurths J., Granular clustering under permanent shear. submitted to Phys. Rev. Lett. (1996).

    Google Scholar 

  • Thiessenhusen K.-U., Scholl H., and Spahn F., Structures at resonances in dense planetary rings. submitted to Icarus (1996).

    Google Scholar 

  • Ward W. R., On the radial structure of Saturn's rings. Geophys. Res. Lett. 8, 641 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lutz Schimansky-Geier Thorsten Pöschel

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Spahn, F. (1997). Planetary rings — nonequilibrium systems in space. In: Schimansky-Geier, L., Pöschel, T. (eds) Stochastic Dynamics. Lecture Notes in Physics, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105624

Download citation

  • DOI: https://doi.org/10.1007/BFb0105624

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62893-4

  • Online ISBN: 978-3-540-69040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics