Skip to main content

Decoherence: Concepts and examples

  • Conference paper
  • First Online:
Quantum Future From Volta and Como to the Present and Beyond

Part of the book series: Lecture Notes in Physics ((LNP,volume 517))

Abstract

We give a pedagogical introduction to the process of decoherence — the irreversible emergence of classical properties through interaction with the environment. After discussing the general concepts, we present the following examples: Localisation of objects, quantum Zeno effect, classicality of fields and charges in QED, and decoherence in gravity theory. We finally emphasise the important interpretational features of decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bose, S., Jacobs, K., Knight, P.L. (1997): A scheme to probe the decoherence of a macroscopic object. Report quant-ph/9712017

    Google Scholar 

  • Brune, M., Hagley, E., Dreyer, J., Maître, X., Maali, A., Wunderlich, C., Raimond, J.M., Haroche, S. (1996): Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement. Phys. Rev. Lett. 77, 4887–4890

    Article  ADS  Google Scholar 

  • Caldeira, A.O., Leggett, A.J. (1983): Path integral approach to quantum Brownian motion. Physica 121A, 587–616

    ADS  MathSciNet  Google Scholar 

  • Demers, J.-G., Kiefer, C. (1996): Decoherence of black holes by Hawking radiation. Phys. Rev. D 53, 7050–7061

    Article  ADS  MathSciNet  Google Scholar 

  • Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D. (1996): Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin).

    MATH  Google Scholar 

  • Habib, S., Kluger, Y., Mottola, E., Paz, J.P. (1996): Dissipation and decoherence in mean field theory. Phys. Rev. Lett. 76, 4660–4663

    Article  ADS  Google Scholar 

  • Heisenberg, W. (1958): Die physikalischen Prinzipien der Quantentheorie. (Bibliographisches Institut, Mannheim)

    MATH  Google Scholar 

  • Jammer, M. (1974): The Philosophy of Quantum Mechanics (Wiley, New York)

    Google Scholar 

  • Joos, E. (1984): Continuous measurement: Watchdog effect versus golden rule. Phys. Rev. D 29, 1626–1633

    Article  ADS  MathSciNet  Google Scholar 

  • Joos, E. (1986): Why do we observe a classical spacetime? Phys. Lett. A 116, 6–8

    Article  ADS  MathSciNet  Google Scholar 

  • Joos, E., Zeh, H.D. (1985): The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243

    Article  ADS  Google Scholar 

  • Kiefer, C. (1987): Continuous measurement of mini-superspace variables by higher multipoles. Class. Quantum Grav. 4, 1369–1382

    Article  ADS  MathSciNet  Google Scholar 

  • Kiefer, C. (1992): Decoherence in quantum electrodynamics and quantum cosmology. Phys. Rev. D 46, 1658–1670

    Article  ADS  Google Scholar 

  • Kiefer, C., Polarski, P., Starobinsky, A.A. (1998): Quantum-to-classical transition for fluctuations in the early universe. Submitted to Int. Journ. Mod. Phys. D [Report gr-qc/9802003]

    Google Scholar 

  • Kübler, O., Zeh, H.D. (1973): Dynamics of quantum correlations. Ann. Phys. (N.Y.) 76, 405–418

    Article  ADS  Google Scholar 

  • Landau, L. (1927): Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 45, 430–441

    Article  ADS  Google Scholar 

  • Mott, N.F. (1929): The wave mechanics of α-ray tracks. Proc. R. Soc. Lond. A 126, 79–84

    Article  ADS  Google Scholar 

  • Omnès, R. (1997): General theory of the decoherence effect in quantum mechanics. Phys. Rev. A 56, 3383–3394

    Article  ADS  Google Scholar 

  • Shaisultanov, R.Z. (1995a): Backreaction in scalar QED, Langevin equation and decoherence functional. Report hep-th/9509154

    Google Scholar 

  • Shaisultanov, R.Z. (1995b): Backreaction in spinor QED and decoherence functional. Report hep-th/9512144

    Google Scholar 

  • Zeh, H.D. (1970): On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76

    Article  ADS  Google Scholar 

  • Zeh, H.D. (1986): Emergence of classical time from a universal wave function. Phys. Lett. A 116, 9–12

    Article  ADS  MathSciNet  Google Scholar 

  • Zeh, H.D. (1992): The physical basis of the direction of time (Springer, Berlin)

    MATH  Google Scholar 

  • Zeh, H.D. (1997): What is achieved by decoherence? In New Developments on Fundamental Problems in Quantum Physics, edited by M. Ferrer and A. van der Merwe (Kluwer Academic, Dordrecht) [Report quant-ph/9610014]

    Google Scholar 

  • Zurek, W.H. (1991): Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525

    Article  ADS  MathSciNet  Google Scholar 

  • Zurek, W.H. (1991): Decoherence and the Transition from Quantum to Classical. Physics Today 44 (Oct.), 36–44; see also the discussion in Physics Today (letters) 46 (April), 13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe Blanchard Arkadiusz Jadczyk

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Kiefer, C., Joos, E. (1999). Decoherence: Concepts and examples. In: Blanchard, P., Jadczyk, A. (eds) Quantum Future From Volta and Como to the Present and Beyond. Lecture Notes in Physics, vol 517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105342

Download citation

  • DOI: https://doi.org/10.1007/BFb0105342

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65218-2

  • Online ISBN: 978-3-540-49482-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics