# Quantum jumps revisited: An overview of quantum trajectory theory

Conference paper

First Online:

## Abstract

The quantum trajectory theory of photon scattering in quantum optics is reviewed. Two features of the theory which bear closely on issues of interpretation in quantum mechanics are emphasized: (1) there exist different unravellings of a scattering process which reveal complementary aspects of the dynamics in the interaction region, and (2) through the making of records via a stochastic implementation of a formalized quantum jump a self-consistent interface between a quantum evolution (in Hilbert space) and a classical evolution for the records (time series of real numbers) is achieved.

## Keywords

Coherent State Master Equation Density Operator Cavity Mode Wigner Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- N. Bohr, H. A. Kramers, and J. C. Slater, Phil. Mag.
**47**, 785 (1924); Zs. f. Phys.**24**, 69 (1924)Google Scholar - J. C. Slater, Nature
**113**, 307 (1924)ADSCrossRefGoogle Scholar - H. J. Carmichael, Phys. Rev. A
**56**, 5065 (1997).CrossRefADSGoogle Scholar - See for example the articles by E. Schrödinger, H. Everett III, and E. Wigner in
*Quantum Theory of Measurement*, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983), pp. 152–167, 315–323, 324–341.Google Scholar - G. C. Hegerfeldt and T. S. Wilser, in
*Classical and Quantum Systems: Foundations and Symmetries*, Proceedings of the II International Wigner Symposium, Golsar, Germany, 1991, edited by H. D. Doebner, W. Scherer, and F. Schroeck (World Scientific, Singapore, 1992), pp. 104–115.Google Scholar - J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett.
**68**, 580 (1992).CrossRefADSGoogle Scholar - R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A
**45**, 4579 (1992).CrossRefADSGoogle Scholar - H. J. Carmichael,
*An Open Systems Approach to Quantum Optics*, Lecture Notes in Physics: New Series m: Monographs, Vol. m18 (Springer, Berlin, 1993).zbMATHGoogle Scholar - N. Gisin and I. C. Percival, in
*Experimental Metaphysics*, edited by R. S. Cohen et al. (Kluwer, 1997), pp. 73–90.Google Scholar - Ph. Blanchard and A. Jadczyk, Ann. Physik
**4**, 583 (1995).zbMATHADSMathSciNetCrossRefGoogle Scholar - R. Omnès,
*The Interpretation of Quantum Mechanics*(Princeton University Press, Princeton, 1994).zbMATHGoogle Scholar - L. Mandel, Proc. Phys. Soc. 72, 1037 (1958).CrossRefADSGoogle Scholar
- R. J. Glauber, Phys. Rev. Lett.
**10**, 84 (1963); Phys. Rev.**130**, 2529 (1963);**131**, 2766 (1963).CrossRefADSMathSciNetGoogle Scholar - P. L. Kelly and W. H. Kleiner, Phys. Rev.
**136**, A316 (1964).Google Scholar - H. J. Carmichael, J. Opt. Soc. Am. B
**4**, 1588 (1987), Appendix A.ADSCrossRefGoogle Scholar - H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice, Phys. Rev. A
**39**, 1200 (1989).CrossRefADSGoogle Scholar - Write (5) as \(\dot \rho\)= L
*ρ*with L ≡ L_{0}+ L_{I}^{a}+*L*_{I}^{b},*where L*_{0}*≡*(*i*/*iħ*)(*H*_{B}· − ·*H*_{B}^{†}), L_{I}^{a}≡ 2*κ*_{a}*a*·*a*†, and L_{I}^{b}≡*b*·*b*†. The Dyson series is then developed with L_{0}as the free propagator and L_{I}^{a}and L_{I}^{b}treated as interaction terms.Google Scholar - A. Barchielli, Quantum Opt.
**2**, 423 (1990).CrossRefADSMathSciNetGoogle Scholar - H. M. Wiseman and G. J. Milburn, Phys. Rev. A
**47**, 1652 (1993).CrossRefADSGoogle Scholar - W. H. Zurek, in Physics Today, October 1991, pp. 36–44; several responses to this article appear in Letters to the Editor, Physics Today, April 1993.Google Scholar
- D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh,
*Decoherence and the Appearance of a Classical World in Quantum Theory*, (Springer, Berlin, 1996).zbMATHGoogle Scholar - H. J. Carmichael, P. Kochan, and L. Tian, in
*Coherent States: Past, Present, and Future*, edited by D. H. Feng, J. R. Klauder, and M. R. Strayer (World Scientific, Singapore, 1994), pp. 75–91.Google Scholar - H. J. Carmichael, in
*Quantum Optics VI*, edited by D. F. Walls and J. D. Harvey (Springer, Berlin, 1994).Google Scholar - K. Banaszek and P. L. Knight, Phys. Rev. A
**55**, 2368 (1997).CrossRefADSGoogle Scholar - T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett.
**80**, 492 (1998).CrossRefADSGoogle Scholar - A review of recent work in cavity QED appears in
*Cavity Quantum Electrodynamics*, edited by P. R. Berman (Academic Press, Boston, 1994).Google Scholar

## Copyright information

© Springer-Verlag 1999