Advertisement

Quantum jumps revisited: An overview of quantum trajectory theory

  • H. J. Carmichael
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 517)

Abstract

The quantum trajectory theory of photon scattering in quantum optics is reviewed. Two features of the theory which bear closely on issues of interpretation in quantum mechanics are emphasized: (1) there exist different unravellings of a scattering process which reveal complementary aspects of the dynamics in the interaction region, and (2) through the making of records via a stochastic implementation of a formalized quantum jump a self-consistent interface between a quantum evolution (in Hilbert space) and a classical evolution for the records (time series of real numbers) is achieved.

Keywords

Coherent State Master Equation Density Operator Cavity Mode Wigner Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bohr, H. A. Kramers, and J. C. Slater, Phil. Mag. 47, 785 (1924); Zs. f. Phys. 24, 69 (1924)Google Scholar
  2. J. C. Slater, Nature 113, 307 (1924)ADSCrossRefGoogle Scholar
  3. H. J. Carmichael, Phys. Rev. A 56, 5065 (1997).CrossRefADSGoogle Scholar
  4. See for example the articles by E. Schrödinger, H. Everett III, and E. Wigner in Quantum Theory of Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983), pp. 152–167, 315–323, 324–341.Google Scholar
  5. G. C. Hegerfeldt and T. S. Wilser, in Classical and Quantum Systems: Foundations and Symmetries, Proceedings of the II International Wigner Symposium, Golsar, Germany, 1991, edited by H. D. Doebner, W. Scherer, and F. Schroeck (World Scientific, Singapore, 1992), pp. 104–115.Google Scholar
  6. J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).CrossRefADSGoogle Scholar
  7. R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A 45, 4579 (1992).CrossRefADSGoogle Scholar
  8. H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics: New Series m: Monographs, Vol. m18 (Springer, Berlin, 1993).zbMATHGoogle Scholar
  9. N. Gisin and I. C. Percival, in Experimental Metaphysics, edited by R. S. Cohen et al. (Kluwer, 1997), pp. 73–90.Google Scholar
  10. Ph. Blanchard and A. Jadczyk, Ann. Physik 4, 583 (1995).zbMATHADSMathSciNetCrossRefGoogle Scholar
  11. R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994).zbMATHGoogle Scholar
  12. L. Mandel, Proc. Phys. Soc. 72, 1037 (1958).CrossRefADSGoogle Scholar
  13. R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).CrossRefADSMathSciNetGoogle Scholar
  14. P. L. Kelly and W. H. Kleiner, Phys. Rev. 136, A316 (1964).Google Scholar
  15. H. J. Carmichael, J. Opt. Soc. Am. B 4, 1588 (1987), Appendix A.ADSCrossRefGoogle Scholar
  16. H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice, Phys. Rev. A 39, 1200 (1989).CrossRefADSGoogle Scholar
  17. Write (5) as \(\dot \rho\)= Lρ with L ≡ L0 + LIa + L Ib, where L 0 (i/)(H B · − · H B), LIa ≡ 2κ a a · a†, and LIbb · b†. The Dyson series is then developed with L0 as the free propagator and LIa and LIb treated as interaction terms.Google Scholar
  18. A. Barchielli, Quantum Opt. 2, 423 (1990).CrossRefADSMathSciNetGoogle Scholar
  19. H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 1652 (1993).CrossRefADSGoogle Scholar
  20. W. H. Zurek, in Physics Today, October 1991, pp. 36–44; several responses to this article appear in Letters to the Editor, Physics Today, April 1993.Google Scholar
  21. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer, Berlin, 1996).zbMATHGoogle Scholar
  22. H. J. Carmichael, P. Kochan, and L. Tian, in Coherent States: Past, Present, and Future, edited by D. H. Feng, J. R. Klauder, and M. R. Strayer (World Scientific, Singapore, 1994), pp. 75–91.Google Scholar
  23. H. J. Carmichael, in Quantum Optics VI, edited by D. F. Walls and J. D. Harvey (Springer, Berlin, 1994).Google Scholar
  24. K. Banaszek and P. L. Knight, Phys. Rev. A 55, 2368 (1997).CrossRefADSGoogle Scholar
  25. T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).CrossRefADSGoogle Scholar
  26. A review of recent work in cavity QED appears in Cavity Quantum Electrodynamics, edited by P. R. Berman (Academic Press, Boston, 1994).Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • H. J. Carmichael
    • 1
  1. 1.Department of PhysicsUniversity of OregonEugene

Personalised recommendations