Statistical mechanics of network models of macroevolution and extinction

  • Ricard V. Solé
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 527)


The fossil record of life has been shown to provide evidence for scaling laws in both time series and in some statistical features. This evidence was suggested to be linked with a self-organized critical phenomenon by several authors. In this paper we review some of these models and their specific predictions. It is shown that most of the observed statistical properties of the evolutionary process on the long time scale can be reproduced by means of a simple model involving a network of interactions among species. The model is able to capture the essential features of the extinction and diversification process and gives power law distributions for (i) extinction events, (ii) taxonomy of species-genera data, (iii) lifetime distribution of genus close to those reported from paleontological databases. It also provides a natural decoupling between micro- and macroevolutionary processes.


Fossil Record Mass Extinction Extinction Event Fitness Landscape Extinct Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P. et al. 1992. The economy as an evolving complex system. SFI Institute Series, Adison-WesleyGoogle Scholar
  2. 2.
    Amaral, L. A. N. and Meyer, M. 1998. Environmental changes, coextinction and patterns in the fossil record. Preprint cond-mat/9804102Google Scholar
  3. 3.
    Bak, P., Tang, C. and Wiesenfeld, K. 1987. Self-organized criticality: an explanation for 1/f noise. Phys. Rev. Lett. 59, 381CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bak, P., Flyvbjerg, H. and Lautrup, B. 1992. Coevolution is a rugged fitness landscape. Phys. Rev. A46, 6724ADSGoogle Scholar
  5. 5.
    Bak, P. and Sneppen, K. 1993. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71 4083CrossRefADSGoogle Scholar
  6. 6.
    Bak, P. (1996) How Nature Works, Springer/CopernicusGoogle Scholar
  7. 7.
    Bak, P. Paczuski, M and Shubik, M. 1996. Price Variations in a Stock Market with Many Agents SFI working paper 96-09-075.Google Scholar
  8. 8.
    Bascompte, J. and Solé, R.V. 1995. Rethinking complexity: modelling spatiotemporal phenomena in ecology. Trends Ecol. Evol. vol. 10, no. 9, 361–366.CrossRefGoogle Scholar
  9. 9.
    Benton, M. J. (ed.) 1993, The Fossil Record 2, Chapman and Hall (London)Google Scholar
  10. 10.
    Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268, 52–58.CrossRefADSGoogle Scholar
  11. 11.
    Benton, M.J. 1995b. Red Queen Hypothesis. In: Palaeobiology (ed. D.E.G. Briggs & P. R. Crowther). Blackwells. Oxford.Google Scholar
  12. 12.
    Burlando, B. 1990. The fractal dimension of taxonomic systems. J. theor. Biol. 146, 99CrossRefGoogle Scholar
  13. 13.
    Burlando, B. 1993. The fractal geometry of evolution. J. theor. Biol. 163, 161CrossRefGoogle Scholar
  14. 14.
    Chaloner, W. and Hallam, A. (eds) 1989. Evolution and Extinction. Phil. Trans. R. Soc. London B325, 239–488Google Scholar
  15. 15.
    Drossel, B. 1998. Extinction events and species lifetimes in a simple ecological model. Phys. Rev Lett., in pressGoogle Scholar
  16. 16.
    Elliott, D. K. (ed) 1986. Dynamics of extinction. Wiley, New York.Google Scholar
  17. 17.
    Engelhardt, R. 1998 Emergent Percolating Nets in Evolution, Ph D Thesis, University of CopenhagenGoogle Scholar
  18. 18.
    Feder, J. 1988. Fractals, Plenum Press, New YorkzbMATHGoogle Scholar
  19. 19.
    Gould, S.J. & Eldregde, N. 1993. Punctuated equilibrium comes of age. Nature 366, 223CrossRefADSGoogle Scholar
  20. 20.
    House, M. R. 1989. Ammonoid extinction events. Phil. Trans. R. Soc. London B325, 307ADSGoogle Scholar
  21. 21.
    Jablonski, D. 1994. Extinctions in the fossil record. Phil. Trans. R. Soc. Lond. B344, 11ADSGoogle Scholar
  22. 22.
    Jablonski, D., Erwin, D. H. and Lipps, J. H. 1996. Evolutionary paleobiology. Chicago U. PressGoogle Scholar
  23. 23.
    Jensen, H. 1998 Selforganized Criticality, Cambridge U. Press, CambridgeGoogle Scholar
  24. 24.
    Kauffman, S. and Johnsen, J. 1991. Coevolution to the edge of chaos: coupled fitness landscapes, poised states and coevolutionary avalanches. J. Theor. Biol. 149, 467CrossRefGoogle Scholar
  25. 25.
    Kauffman, S. 1993. The Origins of Order, Oxford U. Press, Oxford.Google Scholar
  26. 26.
    Kauffman, S. 1995. At home in the Universe. Viking, Great Britain.Google Scholar
  27. 26a.
    Keitt, T.M. & Marquet, P.A. 1996. The introduced Hawaiian avifauna reconsidered: evidence for self-organized criticality? J. theor. Biol. 182, 161CrossRefGoogle Scholar
  28. 27.
    Kirchner, J. W. and Weil, A. 1998 No fractals in fossil extinction statistics. Nature 395, 337CrossRefADSGoogle Scholar
  29. 28.
    Korvin, G. 1992. Fractal Models in the Earth Sciences, ElsevierGoogle Scholar
  30. 29.
    Maddox, J. 1994, Punctuated equilibrium on a computer. Nature 371, 197CrossRefADSGoogle Scholar
  31. 30.
    Mandelbrot, B. B. 1963. The variation of certain speculative prices. J. of Business of the U. of Chicago, 36, 307Google Scholar
  32. 31.
    Mandelbrot, B. B. 1982. The fractal Geometry of Nature, Freeman, New YorkzbMATHGoogle Scholar
  33. 32.
    Manrubia, S. C. and Paczuski, M. 1998. A simple model of large scale organization in evolution. Int. J. Mod. Phys. C (in press)Google Scholar
  34. 33.
    Maynard Smith, J. 1989. The causes of extinction. Phil. Trans. R. Soc. Lond. B 325, 241ADSCrossRefGoogle Scholar
  35. 34.
    Newman, M.E.J. and Roberts, B. W. 1995a. Mass extinction: evolution and the effects of external influences on unfit species. Proc. Roy. Soc. Lond. B 260, 31CrossRefADSGoogle Scholar
  36. 35.
    Newman, M. E. J. 1996. Self-organized criticality, evolution and the fossil extinction record. Proc. Roy. Soc. London B 263, 1605CrossRefADSGoogle Scholar
  37. 36.
    Newman, M. E. J. 1997. A model of mass extinction. J. Theor. Biol. 189, 235CrossRefGoogle Scholar
  38. 37.
    Newman, M. and Eble, G. 1998. Power spectra of extinction in the fossil record. SFI Working Paper 98-12-109Google Scholar
  39. 38.
    Plotnick, R. E. and McKinney, M. 1993. Ecosystem organization and extinction dynamics. Palaios 8, 202CrossRefGoogle Scholar
  40. 39.
    Rampino, M. R. and Sothers, R. B. 1984. Terrestrial mass extinctions, cometary impacts and the Sun's motion perpendicular to the galactic plane. Nature 308, 709CrossRefADSGoogle Scholar
  41. 40.
    Rampino, M. R. and Sothers, R. B. 1995. The Shiva hypothesis: impacts, mass extinctions and the Galaxy. Earth, Moon and Planets 72, 441CrossRefADSGoogle Scholar
  42. 41.
    Raup, D. 1993. Extinctions: Bad Genes or Bad Luck?. Oxford U. PressGoogle Scholar
  43. 42.
    Raup, D.M. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17, 37Google Scholar
  44. 43.
    Raup, D. M. and Sepkoski, J. J., Jr. 1984. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 81, 801CrossRefADSGoogle Scholar
  45. 44.
    Ray, T. S. and Jan, N. (1994) Anomalous approach to criticality in a model of life at the edge of chaos. Phys. Rev. Lett. 72, 4045CrossRefADSGoogle Scholar
  46. 45.
    Roberts, B.W. & Newman, M.E.J. 1996. A model for evolution and extinction. J. theor. Biol. (in press).Google Scholar
  47. 46.
    Schroeder, M. 1991. Fractals, Chaos, Power Laws. Freeman, New YorkzbMATHGoogle Scholar
  48. 47.
    Sepkoski, J. J., Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity III. Post-Paleozoic families and mass extinctions. Paleobiology 10, 246Google Scholar
  49. 48.
    Sepkoski, J. J. and Raup, D. 1986. Periodicity in marine extinction events, in: Elliott, D. K. (ed) Dynamics of Extinction. Wiley, New YorkGoogle Scholar
  50. 49.
    Sepkoski, J. J. 1986. Phanerozoic overview of mass extinction. In: D. Raup and D. Jablonski (eds): Pattern and Process in the History of Life, Springer-Verlag, Berlin. pp. 277Google Scholar
  51. 50.
    Sibani, P. 1997. Soluble model of evolution and extinction dynamics in a rugged fitness landscape. Phys. Rev. Lett. 79, 1413CrossRefADSGoogle Scholar
  52. 51.
    Signor, P. W. and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol. Soc. of America Special Paper 190, 291Google Scholar
  53. 52.
    Slatkin, M. 1981. A diffusion model of species selection. Paleobiology 7, 421Google Scholar
  54. 53.
    Solé, R. V. and Bascompte, J. 1996. Are critical phenomena relevant to large-scale evolution? Proc. R. Soc. London 263, 161CrossRefADSGoogle Scholar
  55. 54.
    Solé, R. V., Bascompte, J. and Manrubia, S. C. 1996. Extinctions: Bad genes or weak chaos?. Proc. Roy. Soc. London B 263, 1407CrossRefADSGoogle Scholar
  56. 55.
    Solé, R. V., Manrubia, S. C., Benton, M. and Bak, P. 1997. Selfsimilarity of extinction statistics in the fosil record. Nature 388, 764CrossRefADSGoogle Scholar
  57. 56.
    Solé, R. V., Manrubia, S. C., Kauffman, S. A., Benton, M. and Bak, P. 1998. Criticality and scaling in evolutionary ecology. Trends in Ecol. Evol. (in press)Google Scholar
  58. 57.
    Solé, R. V. et al. 1998. Red Queen dynamics, competition and critical points in a model of RNA virus quasispecies, SFI working paper 97-11-085, to appear in J. Theor. Biol.Google Scholar
  59. 58.
    Solé, R. V. and Alonso, D. 1998. Self-organized criticality in a multispecies model ecosystem. In preparationGoogle Scholar
  60. 59.
    Stanley, H. H. et. al. 1996. Statistical mechanics in biology: how ubiquitous are long-range correlations? Physica A205, 214–253ADSGoogle Scholar
  61. 60.
    Stenseth, N.C. and Maynard Smith, J. 1984. Coevolution in ecosystems: Red Queen evolution or Stasis? Evolution 38, 870CrossRefGoogle Scholar
  62. 61.
    Sugihara, G. and May, R. M. 1990. Applications of fractals in ecology. Trends Ecol. Evol. 5, 79CrossRefGoogle Scholar
  63. 62.
    Van Valen, L. 1973 A new evolutionary law. Evol. Theory 1, 1Google Scholar
  64. 63.
    Vermeij, G. J. 1987. Evolution as escalation. Princeton U. Press, Pinceton NJGoogle Scholar
  65. 64.
    N. Yoffee and C. L. Cowgill, The Collapse of Ancient States and Civilizations. University of Arizona Press, Tucson, 1988Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Ricard V. Solé
    • 1
    • 2
  1. 1.Complex Systems Research Group, Dep. of PhysicsFEN Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations