Skip to main content

Interaction of meandering spiral waves in active media

  • Conference paper
  • First Online:
A Perspective Look at Nonlinear Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 503))

Abstract

Within a light-sensitive Belousov-Zhabotinskii medium we study the interaction of meandering spiral waves. Using an open gel-reactor we find experimental evidence that a small pair of spiral waves undergoes a symmetry-breaking instability, where one member of the spiral pair overwhelms its neighbor and pushes it to the periphery of the medium. To avoid this instability we consider the interaction of a spiral wave with its virtual mirror image close to a plane boundary impermeable to diffusion. The drift of this pseudo-bound state parallel to the boundary occurs on a time scale up to two orders of magnitude larger than the rotation period. The experimental data agree qualitatively with results of numerical simulations obtained within a modified kinematic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Zaikin, A.M. Zhabotinskii, Nature 225, 535 (1970)

    Article  ADS  Google Scholar 

  2. A.T. Winfree, Science 175, 634 (1972); Science 181, 937 (1973).

    Article  ADS  Google Scholar 

  3. G. Ertl, Science 254, 1750 (1991)

    Article  ADS  Google Scholar 

  4. M. Eiswirth, and G. Ertl, Pattern Formation on Catalytic Surfaces, in: R. Kapral, K. Showalter, (eds) Chemical waves and Patterns (Kluwer Academic Publishers, Dordrecht (1995), p. 447

    Google Scholar 

  5. S. Jakubith, H.H. Rotermund, W. Engel, A. v. Oertzen, and G. Ertl, Phys. Rev. Lett. 65, 3031 (1990).

    Article  ADS  Google Scholar 

  6. G. Gerisch, Naturwissenschaften 58, 420 (1983)

    Google Scholar 

  7. K.J. Lee, E.C. Cox, and R.E. Goldstein, Phys. Rev. Lett. 76, 1174 (1996).

    Article  ADS  Google Scholar 

  8. J.M. Davidenko, A M. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife, Nature 355, 349 (1992).

    Article  ADS  Google Scholar 

  9. J. Lechleiter, S. Girad, E. Peralta, and D. Clapham, Science 252, 123 (1991).

    Article  ADS  Google Scholar 

  10. S.C. Müller, Th. Plesser, and B. Hess, Physica D 24, 71 (1987)

    Article  ADS  Google Scholar 

  11. G.S. Skinner, H.L. Swinney, Physica D 48, 1 (1991)

    Article  MATH  ADS  Google Scholar 

  12. H. Engel, M. Braune, Physica Scripta 49, 685 (1993)

    Article  Google Scholar 

  13. M. Braune, H. Engel, Chem. Phys. Lett. 204, 257 (1993); Chem. Phys. Lett. 211, 534 (1993)

    Article  ADS  Google Scholar 

  14. G. Li, Q. Quang, V. Petrov, and H.L. Swinney, Phys. Rev. Lett. 77, 2105 (1996).

    Article  ADS  Google Scholar 

  15. D. Barkley, M. Kness, and L.S. Tuckerman, Phys. Rev. A 42, 2489 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Barkley, Phys. Rev. Lett. 68, 2090 (1992); Phys. Rev. Lett. 72, 164 (1994); in Chemical waves and Patterns (Ref. [2]), p. 163

    Article  ADS  Google Scholar 

  17. A.T. Winfree, Chaos 1, 303 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. W. Jahnke, W.E. Skaggs, and A.T. Winfree, J. Phys. Chem. 93, 740 (1989).

    Article  Google Scholar 

  19. I. Aranson, L. Kramer, and A. Weber, Physica D 53, 376 (1991); Phys. Rev. E 47, 3231 (1993); 48, R9 (1993); Phys. Rev. Lett. 72, 2316 (1994); I. Aranson, D. Kessler, and I. Mitkov, Phys. Rev. E 50, R2395 (1994).

    Article  MATH  ADS  Google Scholar 

  20. E.A. Ermakova, A.M. Pertsov, E.E. Shnol, Physica D 40, 185 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996).

    Article  ADS  Google Scholar 

  22. M. Braune, A. Schrader, H. Engel, Chem. Phys. Lett. 222, 358 (1994)

    Article  ADS  Google Scholar 

  23. V.S. Zykov, O. Steinbock, and S.C. Müller, Chaos 4, 509 (1994)

    Article  ADS  Google Scholar 

  24. A. Schrader, M. Braune, H. Engel, Phys. Rev. E 52, 98 (1995).

    Article  ADS  Google Scholar 

  25. A.S. Mikhailov, V.S. Zykov, in Chemical Waves and Patterns, (Ref.

    Google Scholar 

  26. M. Braune, H. Engel, “Kinematical description of meandering spiral waves in active media”. In: H. Engel, F.-J. Niedernostheide, H.-G. Purwins, and E. Schöll (eds.), “Self-Organization in Activator-Inhibitor Systems: Semiconductors, Gas-Discharges and Chemical Active Media” (Wissenschaft & Technik-Verlag, Berlin, 1996), p. 94; Phys. Rev. E (1997), in press.

    Google Scholar 

  27. Q. Quang, H.L. Swinney, Nature 352, 610 (1991); Chaos 1, 411 (1991)

    Article  ADS  Google Scholar 

  28. P. De Kepper, V. Castets, E. Dulos, and J. Boissonade, Physica D 49, 161 (1991).

    Article  ADS  Google Scholar 

  29. M. Ruiz-Villarreal, M. Gomez-Gesteira, C. Souto, A.P. Munuzuri, and V. Pérez-Villar, Phys. Rev. E 54, 2999 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Parisi Stefan C. Müller Walter Zimmermann

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Brandtstädter, H., Braune, M., Engel, H. (1998). Interaction of meandering spiral waves in active media. In: Parisi, J., Müller, S.C., Zimmermann, W. (eds) A Perspective Look at Nonlinear Media. Lecture Notes in Physics, vol 503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104968

Download citation

  • DOI: https://doi.org/10.1007/BFb0104968

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63995-4

  • Online ISBN: 978-3-540-69681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics