Advertisement

Data clustering and the glassy structures of randomness

  • E. Lootens
  • C. Van den Broeck
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)

Abstract

Using techniques, borrowed from statistical mechanics of spin glasses, we investigate the properties of cluster algorithms applied to random and non-random data points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Hertz A. Krogh and R. G. Palmer. Introduction to the Theory of Neural Computation, volume 1 of Lecture Notes Volume in the Santa Fe Institute Studies in the sciences of complexity. Addison-Wesley, Santa Fe, 1 edition, 1991.Google Scholar
  2. [2]
    M. Griniasty and H. Gutfreund. J. Phys. A, 24:715, 1990.CrossRefADSGoogle Scholar
  3. [3]
    E. Oja. J. Math. Biology, 15:267, 1992.CrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Biehl and A. Mietzner. Statistical mechanics of unsupervised learning. Europhys. Lett., 24:421, 1993.ADSCrossRefGoogle Scholar
  5. [5]
    J.R.L. Almeida and D.J. Thouless. Stability of the sherrington-kirpatrick solution of a spin glass model. J. Phys. A, 11(5):983, 1978.CrossRefADSGoogle Scholar
  6. [6]
    M. Bouten. J. Phys. A, 27(17):6021, 1994.zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. [7]
    E. Lootens and C. Van den Broeck. Europhys. Lett., 30(7):381, 1995.CrossRefADSGoogle Scholar
  8. [8]
    P. R. Krishnaiah and L. N. Kanal. Classification Pattern Recognition and Reduction of Dimensionality, Handbook of Statistics, volume 2. North Holland, Amsterdam, 1982.Google Scholar
  9. [9]
    T. Watkin and J.P. Nadal. J. Phys. A, 27(6):1899, 1994.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. [10]
    P. Reimann and C. Van den Broeck. Phys. Rev. E, 53:3989, 1996.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • E. Lootens
    • 1
  • C. Van den Broeck
    • 1
  1. 1.LUCDiepenbeekBelgium

Personalised recommendations