Fractal growth with quenched disorder

  • L. Pietronero
  • R. Cafiero
  • A. Gabrielli
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)


In this lecture we present an overview of the physics of irreversible fractal growth process, with particular emphasis on a class of models characterized by quenched disorder. These models exhibit self-organization, with critical properties developing spontaneously, without the fine tuning of external parameters. This situation is different from the usual critical phenomena, and requires the introduction of new theoretical methods. Our approach to these problems is based on two concepts, the Fixed Scale Transformation, and the quenched-stochastic transformation, or Run Time Statistics (RTS), which maps a dynamics with quenched disorder into a stochastic process. These methods, combined together, allow us to understand the self-organized nature of models with quenched disorder and to compute analytically their critical exponents. In addition, it is also possible characterize mathematically the origin of the dynamics by avalanches and compare it with the continuous growth of other fractal models. A specific application to Invasion Percolation will be discussed. Some possible relations to glasses will also be mentioned.


Fractal Dimension Fractal Structure Fractal Growth Deterministic Dynamic Sandpile Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Mandelbrot B. B. (1982): The fractal Geometry of Nature. W. H. Freeman, New York.zbMATHGoogle Scholar
  2. Witten T. A., Sander L. M. (1981): Phys. Rev. Lett. 47, 1400.CrossRefADSGoogle Scholar
  3. Niemeyer L., Pietronero L., Wiesmann H. J. (1984): Phys. Rev. Lett. 52, 1033.CrossRefADSMathSciNetGoogle Scholar
  4. Bak P., Sneppen K. (1993): Phys. Rev. Lett. 71, 4083.CrossRefADSGoogle Scholar
  5. Wilkinson D., Willemsen J. F. (1983): J. Phys. A 16, 3365.ADSMathSciNetGoogle Scholar
  6. Bak P., Tang C., Wiesenfeld K. (1987): Phys. Rev. Lett. 59, 381.CrossRefADSMathSciNetGoogle Scholar
  7. Sneppen K. (1992): Phys. Rev. Lett. 69, 3539.CrossRefADSGoogle Scholar
  8. Family F., Zhang Y. C., Vicsek T. (1986): J. Phys. A 19, L733.Google Scholar
  9. De Arcangelis L., Hansen A., Herrmann H. J., Roux S. (1989): Phys. Rev. B 40, 877.ADSGoogle Scholar
  10. Hansen A., Hinrichsen E. L., Roux S., Herrmann H. J., De Arcangelis L. (1990): Europhys. Lett. 13, 341.ADSCrossRefGoogle Scholar
  11. Cafiero R., Pietronero L., Vespignani A. (1993): Phys. Rev. Lett. 70, 3939.CrossRefADSGoogle Scholar
  12. Erzan A., Pietronero L., Vespignani A. (1995): Rev. Mod. Phys. 67, no. 3.Google Scholar
  13. Pietronero L., Schneider W. R., Stella A. (1990): Phys. Rev. A 42, R7496.Google Scholar
  14. Pietronero L., Schneider W. R. (1990): Physica A 119, 249–267.MathSciNetGoogle Scholar
  15. Marsili M. (1994): J. Stat. Phys. 77, 733.CrossRefMathSciNetADSGoogle Scholar
  16. Gabrielli A., Marsili M., Cafiero R., Pietronero L. (1996): J. Stat. Phys. 84, 889–893.zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. Marsili M. (1994): Europhys. Lett. 28, 385.CrossRefADSGoogle Scholar
  18. Paczuski M., Bak P., Maslov S. (1996): Phys. Rev. E 53, 414.ADSGoogle Scholar
  19. Cafiero R., Gabrielli A., Marsili M., Pietronero L. (1996): Phys. Rev. E 54, 1406.ADSGoogle Scholar
  20. Vendruscolo M., Marsili M. (1996): Phys. Rev. E 54, R1021.Google Scholar
  21. Maslov S. (1995): Phys.Rev.Lett. 74, 562.CrossRefADSGoogle Scholar
  22. Marsili M., Caldarelli G., Vendruscolo M. (1996): Phys. Rev. E 53, 13.ADSGoogle Scholar
  23. Cafiero R., Gabrielli A., Marsili M., Torosantucci L., Pietronero L. (1996): in preparation.Google Scholar
  24. Tosatti E., Zannetti M., Pietronero L. (1988): Z. Phys. B 73, 161.CrossRefMathSciNetADSGoogle Scholar
  25. Bouchaud J. P., Comtet A., Georges A., Le Doussal P. (1990): Ann. Phys. 201, 285.CrossRefADSGoogle Scholar
  26. Marinari E., Parisi G. (1993): J. Phys. A Math. Gen. 26, L1149.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • L. Pietronero
    • 1
    • 2
  • R. Cafiero
    • 1
    • 2
  • A. Gabrielli
    • 3
  1. 1.Dipartimento di FisicaUniversitá die Roma ”La Sapienza”RomaItaly
  2. 2.Istituto Nazionale di Fisica della Materia, unitá di Roma IItaly
  3. 3.Dipartimento di FisicaUniversitá di Roma ”Tor Vergata”RomaItaly

Personalised recommendations