Equilibrium phase transitions in Josephson junction arrays

  • S. Teitel
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)


I review several problems dealing with the equilibrium behavior of classical two dimensional Josephson junction arrays in applied magnetic fields. Specific attention is given to the cases of a uniform field with average flux density per unit cell of f=0, f=1/2, f=1/q and f=1/2−1/q. Several models incorporating the effects of randomness on the Josephson array are also reviewed. These include the case of a random vortex pinning potential and its effects on vortex lattice order, and the spin glass, gauge glass, and positionally disordered array.


Vortex Lattice Melting Transition Triangular Grid Order Line Charge Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagchi K., Anderson H. C., Swope W. (1996): Computer simulation study of the melting transition in two dimensions. Phys. Rev. Lett. 76, 255CrossRefADSGoogle Scholar
  2. Benz S. P., Forrester M. G., Tinkham M., Lobb C. J. (1988): Positional disorder in superconducting wire networks and Josephson junction arrays. Phys. Rev. B 38, 2869CrossRefADSGoogle Scholar
  3. Bokil H. S., Young A. P. (1996): Study of chirality in the two-dimensional XY spin glass. Preprint, cond-mat/9512042Google Scholar
  4. Caillol J. M., Levesque D., Weis J. J., Hansen J. P. (1982): A Monte Carlo study of the classical two-dimensional one-component plasma. J. Stat. Phys. 28, 325CrossRefADSGoogle Scholar
  5. Caillol J. M., Levesque D. (1986): Low-density phase diagram of the two-dimensional Coulomb gas. Phys. Rev. B 33, 499CrossRefADSGoogle Scholar
  6. Chakrabarti A., Dasgupta C. (1988): Phase transition in positionally disordered Josephson-junction arrays in a transverse magnetic field. Phys. Rev. B 37, 7557CrossRefADSGoogle Scholar
  7. Choi M. Y., Chung J. S., Stroud D. (1987): Positional disorder in a Josephsonjunction array. Phys. Rev. B 35 1669CrossRefADSGoogle Scholar
  8. Choquard Ph., Clerouin J. (1983): Cooperative phenomena below melting of the one-component two-dimensional plasma. Phys. Rev. Lett. 50, 2086CrossRefADSGoogle Scholar
  9. Chudnovsky E. M. (1991): Orientational and positional order in flux lattices of type-II superconductors. Phys. Rev. B 43, 7831CrossRefADSGoogle Scholar
  10. Cieplak M., Banavar J. R., Li M. S., Khurana A. (1992): Frustration, scaling, and local gauge invariance. Phys. Rev. B 45, 786CrossRefADSGoogle Scholar
  11. Cohn M. B., Rzchoswki M. S., Benz S. P., Lobb C. J. (1991): Vortex-defect interactions in Josephson-junction arrays. Phys. Rev. B 43, 12823CrossRefADSGoogle Scholar
  12. Dodgson M. J. W. (1995): Investigation on the ground states of a model thin film superconductor on a sphere. Preprint, cond-mat/9512124Google Scholar
  13. Fisher D. S. (1980): Flux-lattice melting in a thin-film superconductor. Phys. Rev. B 22, 1190CrossRefADSGoogle Scholar
  14. Fisher M. P. A., Tokuyasu T. A., Young A. P. (1991): Vortex variable-rangehopping resistivity in superconducting films. Phys. Rev. Lett. 66, 2931CrossRefADSGoogle Scholar
  15. Forrester M. B., Lee H. J., Tinkham M., Lobb C. J. (1988): Positional disorder in Josephson-junction arrays: Experiments and simulations. Phys. Rev. B 37, 5966CrossRefADSGoogle Scholar
  16. Forrester M. G., Benz S. P., Lobb C. J. (1990): Monte Carlo simulations of Josephson-junction arrays with positional disorder. Phys. Rev. B 41, 8749CrossRefADSGoogle Scholar
  17. Fradkin E., Huberman B. A., Shenker S. H. (1978): Gauge symmetries in random magnetic systems. Phys. Rev. B 18, 4789CrossRefADSGoogle Scholar
  18. Franz M., Teitel S. (1995): Vortex-lattice melting in two-dimensional superconducting networks and films. Phys. Rev. B 51 6551CrossRefADSGoogle Scholar
  19. Franz M., Teitel S. (1996): Effect of random pinning on 2D vortex lattice correlations. In preparationGoogle Scholar
  20. Friesen M. (1995): Critical and non-critical behavior of the Kosterlitz-Thouless-Berezinskii transition. Phys. Rev. B 53, R514Google Scholar
  21. Giamarchi T., Le Doussal P. (1994): Elastic theory of pinned flux lattices. Phys. Rev. Lett. 72, 1530CrossRefADSGoogle Scholar
  22. Gingras M. J. P. (1992): Numerical study of vortex-glass order in randomsuperconductor and related spin-glass models. Phys. Rev. B 45, 7547CrossRefADSzbMATHGoogle Scholar
  23. Giovannella C., Tinkham M., eds. (1995): Macroscopic Quantum Phenomena and Coherence in Superconducting Networks. (World Scientific, Singapore)Google Scholar
  24. Granato E., Kosterlitz J. M. (1986): Quenched disorder in Josephson-junction arrays in a transverse magnetic field. Phys. Rev. B 33, 6533CrossRefADSGoogle Scholar
  25. Granato E., Nightingale M. P. (1993): Chiral exponents of the square-lattice frustrated XY model: a Monte Carlo transfer-matrix calculation. Phys. Rev. B 48, 7438CrossRefADSGoogle Scholar
  26. Grest G. S. (1989): Critical behavior of the two-dimensional uniformly frustrated charged Coulomb gas. Phys. Rev. B 39, 9267CrossRefADSGoogle Scholar
  27. Gupta P., Teitel S. (1996): Phase diagram of the 2D dense lattice Coulomb gas. In preparationGoogle Scholar
  28. Halsey T. C. (1985): Josephson-junction array in an irrational magnetic field: A superconducting glass? Phys. Rev. Lett. 55, 1018CrossRefADSGoogle Scholar
  29. Halsey T. C. (1988): On the critical current of a Josephson junction array in a magnetic field. Physica B 152, 22CrossRefADSGoogle Scholar
  30. Hattel S. A., Wheatley J. M. (1994): Depinning phase transitions in two-dimensional lattice Coulomb solids. Phys. Rev. B 50 16590CrossRefADSGoogle Scholar
  31. Hattel S. A., Wheatley J. M. (1995): Flux lattice melting and depinning in the weakly frustrated two-dimensional XY model. Phys. Rev. B 51, 11951CrossRefADSGoogle Scholar
  32. Hu J., MacDonald A. H. (1993): Two-dimensional vortex lattice melting. Phys. Rev. Lett. 71, 432CrossRefADSGoogle Scholar
  33. José J. V., Kadanoff L. P., Kirkpatrick S., Nelson D. R. (1977): Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217CrossRefADSGoogle Scholar
  34. Kato Y., Nagaosa N. (1993): Monte Carlo simulation of two-dimensional flux-linelattice melting. Phys. Rev. B 48, 7383CrossRefADSGoogle Scholar
  35. Kawamura H., Tanemura M. (1987): Chiral order in a two-dimensional XY spin glass. Phys. Rev. B 36, 7177CrossRefADSGoogle Scholar
  36. Knops Y. M. M., Nienhuis B., Knops H. J. F., Blöte J. W. J. (1994): 19-vertex version of the fully frustrated XY model. Phys. Rev. B 50, 1061CrossRefADSGoogle Scholar
  37. Kolahchi M. R., Straley, J. P. (1991): Ground state of the uniformly frustrated two-dimensional XY model near f=1/2. Phys. Rev. B 43, 7651CrossRefADSGoogle Scholar
  38. Korshunov S. E. (1986): Phase transitions in two-dimensional uniformly frustrated XY models. II. General scheme. J. Stat. Phys. 43, 17CrossRefMathSciNetADSGoogle Scholar
  39. Korshunov S. E. (1993): Replica symmetry breaking in vortex glasses. Phys. Rev. B 48, 3669ADSGoogle Scholar
  40. Kosterlitz J. M., Thouless D. (1973): Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181CrossRefADSGoogle Scholar
  41. Kosterlitz J. M. (1974): The critical properties of the two-dimensional xy model. J. Phys. C. 7, 1046CrossRefADSGoogle Scholar
  42. Larkin A. I., Ovchinnikov Yu. N. (1979) Pinning in type II superconductors. J. Low Temp. Phys. 34, 409CrossRefADSGoogle Scholar
  43. Lee D. H., Joannopoulos J. D., Negele J. W., Landau D. P. (1986): Symmetry analysis and Monte Carlo study of a frustrated antiferromagnetic planar (XY) model in two dimensions. Phys. Rev. B 33, 450CrossRefADSGoogle Scholar
  44. Lee J., Kosterlitz J. M., Granato E. (1991): Monte Carlo study of frustrated XY models on a triangular and square lattice. Phys. Rev. B 43, 11531CrossRefADSGoogle Scholar
  45. Lee J.-R. (1994): Phase transitions in the two-dimensional classical lattice Coulomb gas of half-integer charges. Phys. Rev. B 49, 3317CrossRefADSGoogle Scholar
  46. Lee J.-R., Teitel S. (1992): Phase transitions in classical two-dimensional lattice Coulomb gases. Phys. Rev. B 46, 3247CrossRefADSGoogle Scholar
  47. Lee S., Lee K.-C. (1994): Phase transitions in the fully frustrated XY model studied by the microcanonical Monte Carlo technique. Phys. Rev. B 49, 15184CrossRefADSGoogle Scholar
  48. Lee S., Lee K.-C. (1995): Phase transitions in the uniformly frustrated XY model with frustration parameter f=1/3 studied with use of the microcanonical Monte Carlo technique. Phys. Rev. B 52, 6706CrossRefADSGoogle Scholar
  49. Levin Y., Li X., Fisher M. E. (1994): Coulombic criticality in general dimensions. Phys. Rev. Lett. 73, 2716CrossRefADSGoogle Scholar
  50. Li Y.-H., Teitel S. (1990): Flux flow resistance in frustrated Josephson junction arrays. Phys. Rev. Lett. 65, 2595CrossRefADSGoogle Scholar
  51. Li Y.-H., Teitel S. (1991): The effect of random pinning sites on behavior in Josephson junction arrays. Phys. Rev. Lett. 67, 2894CrossRefADSGoogle Scholar
  52. Lidmar J., Wallin M. (1996): Monte Carlo simulation of a two-dimensional continuum Coulomb gas. Preprint, cond-mat/9607025Google Scholar
  53. Lobb C. J., Abraham D. W., Tinkham M. (1983): Theoretical interpretation of resistive transition data from arrays of superconducting weak links. Phys. Rev. B 27, 150 (1983)CrossRefADSGoogle Scholar
  54. Minnhagen P. (1987): The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001CrossRefADSGoogle Scholar
  55. Minnhagen P., Wallin M. (1987): New phase diagram for the two-dimensional Coulomb gas. Phys. Rev. B 36, 5620CrossRefADSGoogle Scholar
  56. Minnhagen P., Wallin M. (1989): Results for the phase diagram of the two-dimensional Coulomb gas. Phys. Rev. B 40, 5109CrossRefADSGoogle Scholar
  57. Miyshita S., and Shiba H. (1984): Nature of the phase transition of the two-dimensional antiferromagnetic plane rotor model on the triangular lattice. J. Phys. Soc. Jpn. 53, 1145CrossRefADSGoogle Scholar
  58. Nattermann T., Scheidl S., Korshunov S. E., Li M. S. (1995): Absence of reentrance in the two-dimensional XY-model with random phase shifts. J. Phys. I France 5, 565CrossRefGoogle Scholar
  59. Nelson D. R., Halperin B. I. (1979): Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457CrossRefADSGoogle Scholar
  60. Nicolaides D. B. (1991): Monte Carlo simulation of the fully frustrated XY model. J. Phys. A 24, L231Google Scholar
  61. Nightingale M. P., Granato E., Kosterlitz J. M. (1995): Conformal anomaly and critical exponents of the XY Ising model. Phys. Rev. B 52, 7402CrossRefADSGoogle Scholar
  62. Ohta T., Jasnow D. (1979): XY model and the superfluid density in two dimensions. Phys. Rev. B 20, 139CrossRefADSGoogle Scholar
  63. Olsson P. (1995a): Monte Carlo analysis of the two-dimensional XY model. II. Comparison with the Kosterlitz renormalization group equations. Phys. Rev. B 52, 4511CrossRefADSGoogle Scholar
  64. Olsson P. (1995b): Two phase transitions in the fully frustrated XY model. Phys. Rev. Lett. 75, 2758CrossRefADSGoogle Scholar
  65. Ozeki Y., Nishimori H. (1993): Phase diagram of gauge glasses. J. Phys. A 26, 3399CrossRefADSMathSciNetGoogle Scholar
  66. Ramirez-Santiago G., José J. V. (1994): Critical exponents of the fully frustrated two-dimensional XY model. Phys. Rev. B 49, 9567CrossRefADSGoogle Scholar
  67. Ray P., Moore M. A. (1992): Chirality-glass and spin-glass correlations in the two-dimensional random-bond XY model. Phys. Rev. B 45, 5361CrossRefADSGoogle Scholar
  68. Rubinstein M., Shraiman B., Nelson D. R. (1983): Two-dimensional XY magnets with random Dzyaloshinskii-Moriya interactions. Phys. Rev. B 27, 1800CrossRefADSMathSciNetGoogle Scholar
  69. Rzchowski M. S., Benz S. P., Tinkham M., Lobb C. J. (1990): Vortex pinning in Josephson-junction arrays. Phys. Rev. B 42, 2041CrossRefADSGoogle Scholar
  70. Šášik R., Stroud D. (1994): Calculation of the shear modulus of a two-dimensional vortex lattice. Phys. Rev. B 49, 16074CrossRefADSGoogle Scholar
  71. Scheidl S. (1996): Glassy vortex state in a two-dimensional XY-model. Preprint, cond-mat/9601131Google Scholar
  72. Straley J. P. (1988): Magnetic field effects in Josephson networks. Phys. Rev. B 38, 11225CrossRefADSGoogle Scholar
  73. Straley J. P., Barnett G. M. (1993): Phase diagram for a Josephson network in a magnetic field. Phys. Rev. B 48, 3309CrossRefADSGoogle Scholar
  74. Standburg K. J. (1988): Two-dimensional melting. Rev. Mod. Phys. 60, 69CrossRefGoogle Scholar
  75. Tang L.-H. (1996): Vortex statistics in a disordered two-dimensional XY model. Preprint, cond-mat/9602162Google Scholar
  76. Teitel S., Jayaprakash C. (1983a): Phase transitions in frustrated two dimensional XY models. Phys. Rev. B 27, 598CrossRefADSGoogle Scholar
  77. Teitel S., Jayaprakash C. (1983b): Josephson junction arrays in transverse magnetic fields. Phys. Rev. Lett. 51, 1999CrossRefADSGoogle Scholar
  78. Tešanović Z., Xing L. (1991): Critical fluctuations in strongly type-II quasi-two-dimensional superconductors. Phys. Rev. Lett. 67, 2729CrossRefADSGoogle Scholar
  79. Théron R., Korshunov S. E., Simond J. B., Leemann Ch., Martinoli P. (1994): Observation of domain-wall superlattice states in a frustrated triangular array of Josephson junctions. Phys. Rev. Lett. 72, 562CrossRefADSGoogle Scholar
  80. Thijssen J. M., Knops H. J. F. (1988a): Monte Carlo study of the Coulomb-gas representation of frustrated XY models. Phys. Rev. B 37, 7738CrossRefADSGoogle Scholar
  81. Thijssen J. M., Knops H. J. F. (1988b): Analysis of a new set of renormalization equations for the Kosterlitz-Thouless transition. Phys. Rev. B 38, 9080CrossRefADSGoogle Scholar
  82. Thijssen J. M., Knops H. J. F. (1990): Monte Carlo transfer-matrix study of the frustrated XY model. Phys. Rev. B 42, 2438CrossRefADSGoogle Scholar
  83. Vallat A., Beck H. (1992): Classical frustrated XY model: Continuity of the groundstate energy as a function of the frustration. Phys. Rev. Lett. 68, 3096CrossRefADSGoogle Scholar
  84. Vallat A., Beck H. (1994): Coulomb-gas representation of the two-dimensional XY model on a torus. Phys. Rev. B 50, 4015CrossRefADSGoogle Scholar
  85. Villain J. (1975): Theory of one-and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Phys. (Paris) 36, 581Google Scholar
  86. Young A. P. (1979): Melting of the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 1855CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • S. Teitel
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations