Advertisement

Polymer winding numbers and quantum mechanics

  • David R. Nelson
  • Ady Stern
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)

Abstract

The winding of a single polymer in thermal equilibrium around a repulsive cylindrical obstacle is perhaps the simplest example of statistical mechanics in a multiply connected geometry. As shown by S.F. Edwards, this problem is closely related to the quantum mechanics of a charged particle interacting with a Aharonov-Bohm flux. In another development, Pollock and Ceperley have shown that boson world lines in 2+1 dimensions with periodic boundary conditions, regarded as ring polymers on a torus, have a mean square winding number given by <W 2>=2n s ħ 2/mk B T, where m is the boson mass and n s is the superfluid number density. Here, we review the mapping of the statistical mechanics of polymers with constraints onto quantum mechanics, and show that there is an interesting generalization of the Pollock-Ceperley result to directed polymer melts interacting with a repulsive rod of radius a. When translated into boson language, the mean square winding number around the rod for a system of size R perpendicular to the rod reads \(\left\langle {W^2 } \right\rangle = \frac{{n_s \hbar ^2 }}{{2\pi mk_B T}}\ln (R/a)\). This result is directly applicable to vortices in Type II superconductors in the presence of columnar defects. An external current passing through the rod couples directly to the winding number in this case.

Keywords

Periodic Boundary Condition Vortex Line Flux Line Imaginary Time Single Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.F. Edwards, Proc. Phys. Soc. 91, 513 (1967) J. Phys. A1, 15 (1968).zbMATHCrossRefADSGoogle Scholar
  2. [2]
    S. Prager and H.L. Frisch, J. Chem. Phys. 46, 1475 (1967).CrossRefADSGoogle Scholar
  3. [3]
    For a review, see A. Grossberg and A. Khoklov, in Advances in Polymer Science 106, 1 (1993).CrossRefGoogle Scholar
  4. [4]
    J. Rudnick and Y. Hu, J. Phys. A. Math. Gen. 20, 4421 (1987).CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [6]
    E.L. Pollack and D.M. Ceperley, Phys. Rev. B36, 8843 (1987).ADSGoogle Scholar
  7. [7]
    For a review, see D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).CrossRefADSGoogle Scholar
  8. [8]
    G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V. Vinokur, Reviews of Modern Physics 66, 1125 (1994).CrossRefADSGoogle Scholar
  9. [9]
    D.R. Nelson and S. Seung, Phys. Rev. B39, 9153 (1989), D.R. Nelson and P. Le Doussal, Phys. Rev. B42, 10113 (1990).ADSGoogle Scholar
  10. [10]
    B. Drossel and M. Kardar, Phys. Rev. E53, 5861 (1996); and cond-mat/96100119.ADSGoogle Scholar
  11. [11]
    D.R. Nelson and V. Vinokur, Phys. Rev. B48, 13060 (1993).ADSGoogle Scholar
  12. [12]
    Z. Yao, S. Yoon, H. Dai, S. Fan and C.M. Lieber, Nature 371, 777 (1995).CrossRefADSGoogle Scholar
  13. [13]
    We assume currents so small that the structure of the Bose glass state inside the tube is unaffected, due to the transverse Meissner effect[11]. For strong enough currents, the Bose glass in the tube may deform slightly, thus forming a repulsive chiral defect, similar to that discussed by Drossel and Kardar[10].Google Scholar
  14. [14]
    R.P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).Google Scholar
  15. [15]
    R.P. Feynman, Phys. Rev. 91, 1291 (1953).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. [16]
    P. Nozieres and D. Pines, The Theory of Quantum Liquids, vol. 2 (Addison-Wesley, Reading 1990).zbMATHGoogle Scholar
  17. [17]
    D.R. Nelson and J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).CrossRefADSGoogle Scholar
  18. [18]
    See, e.g., R. Bellissent, L. Descotes and P. Pfeuty, Journal of Physics C6, Suppl. A211 (1994).Google Scholar
  19. [19]
    For reviews, see D.R. Nelson, Physica A177, 220 (1991); andADSGoogle Scholar
  20. [19a]
    D.R. Nelson in Observation, Prediction and Simulation of Phase Transition in Complex Fluids, edited by Ml. Bans et al. (Kluwer, The Netherlands, 1995).Google Scholar
  21. [20]
    See, e.g., M.P.A. Fisher and D.H. Lee, Phys. Rev. B39, 2756 (1989).ADSGoogle Scholar
  22. [21]
    P.G. deGennes, Superconductivity of Metals and Alloys (Addison-Wesley, Reading, MA 1989), chapter 2.Google Scholar
  23. [22]
    See., e.g., V.G. Kogan, Phys. Rev. B24, 1572 (1981).ADSGoogle Scholar
  24. [23]
    U. Tauber and D.R. Nelson, submitted to Physics Reports.Google Scholar
  25. [24]
    A. Comtet, J. Desbois and S. Ouvry J. Phys. Math Gen. 23, 3563 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. [24a]
    A. Comtet, J. Desbois and C. Monthus J. Stat. Phys. 73, 433 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. [24b]
    B. Houchmandzadeh, J. Lajzerowicz and M. Vallade J. de Physique 1 2, 1881 (1992).CrossRefADSGoogle Scholar
  28. [25]
    D. Mahan, Many-Particle Physics (Plenum Press, New York 1981), sections (3.3) and (3.7).Google Scholar
  29. [26]
    By taking A(r)=const. in Eq. (52), one easily derives the Pollock-Ceperley formula (9) for bosons on a torus.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • David R. Nelson
    • 1
  • Ady Stern
    • 2
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridge
  2. 2.Department of Condensed Matter PhysicsWeizmann Institute of SciencesRehovotIsrael

Personalised recommendations