Advertisement

Quantum spin glasses

  • Heiko Rieger
  • A. Peter Young
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)

Abstract

Ising spin glasses in a transverse field exhibit a zero temperature quantum phase transition, which is driven by quantum rather than thermal fluctuations. They constitute a universality class that is significantly different from the classical, thermal phase transitions. Most interestingly close to the transition in finite dimensions a quantum Griffiths phase leads to drastic consequences for various physical quantities: for instance diverging magnetic susceptibilities are observable over a whole range of transverse field values in the disordered phase.

Keywords

Spin Glass Quantum Phase Transition Universality Class Nonlinear Susceptibility Transverse Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Sachev, Z. Phys. B 94, 469 (1994); Nucl. Phys. B 464, 576 (1996); STATPHYS 19, ed. Hao Bailin, p. 289 (World Scientific, Singapore, 1996).CrossRefADSGoogle Scholar
  2. [2]
    R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).CrossRefADSGoogle Scholar
  3. [3]
    B. McCoy, Phys. Rev. Lett. 23, 383 (1969).CrossRefADSGoogle Scholar
  4. [4]
    D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992); Phys. Rev. B 51, 6411 (1995).CrossRefADSGoogle Scholar
  5. [5]
    N. Read, S. Sachdev and J. Ye, Phys. Rev. B 52, 384 (1995).CrossRefADSGoogle Scholar
  6. [6]
    A. Crisanti and H. Rieger, J. Stat. Phys. 77, 1087 (1994).CrossRefADSGoogle Scholar
  7. [7]
    A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996).CrossRefADSGoogle Scholar
  8. [8]
    H. Rieger and A. P. Young, Phys. Rev. Lett. 72, 4141 (1994).CrossRefADSGoogle Scholar
  9. [9]
    M. Guo, R. N. Bhatt and D. A. Huse, Phys. Rev. Lett. 72, 4137 (1994).CrossRefADSGoogle Scholar
  10. [10]
    M. J. Thill and D. A. Huse, Physica A, 15, 321 (1995).CrossRefADSGoogle Scholar
  11. [11]
    H. Rieger and A. P. Young, Phys. Rev. B 54, *** (1996).Google Scholar
  12. [12]
    M. Guo, R. N. Bhatt and D. A. Huse, Phys. Rev. B 54, *** (1996).Google Scholar
  13. [13]
    W. Wu et. al, Phys. Rev. Lett. 67, 2076 (1991)CrossRefADSGoogle Scholar
  14. [13a]
    W. Wu, D. Bitko, T. F. Rosenbaum and G. Aeppli, Phys. Rev. Lett. 71, 1919 (1993).CrossRefADSGoogle Scholar
  15. [14]
    B. Boechat, R. dos Santos and M. Continentino, Phys. Rev. B 49, 6404 (1994)CrossRefADSGoogle Scholar
  16. [14a]
    M. Continentino, B. Boechat and R. dos Santos, Phys. Rev. B 50, 13528 (1994).CrossRefADSGoogle Scholar
  17. [15]
    J. Miller and D. Huse, Phys. Rev. Lett. 70, 3147 (1993).CrossRefADSGoogle Scholar
  18. [16]
    J. Ye, S. Sachdev and N. Read, Phys. Rev. Lett. 70, 4011 (1993).CrossRefADSGoogle Scholar
  19. [17]
    The finite temperature features of this model are more delicate because of the issue of replica symmetry breaking. See Y. Y. Goldschmidt and P. Y. Lai, Phys. Rev. Lett. 64, 2567 (1990) and B. K. Chakrabarti, A. Dutta and P. Sen: Quantum Ising Phases and Transitions in Transverse Ising Models, Lecture Notes in Physics m41, Springer Verlag, Berlin-Heidelberg-New York, (1996) for references.CrossRefADSMathSciNetGoogle Scholar
  20. [18]
    R. Oppermann and M. Binderberger, Ann. Physik 3, 494 (1994)ADSCrossRefGoogle Scholar
  21. [18a]
    S. Sachdev, N. Read and R. Oppermann, Phys. Rev. B 52, 10286 (1995); see also R. Oppermann in this volume.CrossRefADSGoogle Scholar
  22. [18b]
    T. M. Nieuwenhuizen, Phys. Rev. Lett. 74, 4289 (1995). F. Pázmándi, G. T. Zimányi and R. T. Scalettar, cond-mat/9602158 (1996).CrossRefADSGoogle Scholar
  23. [19]
    M. Randeira, J. P. Sethna and R. G. Palmer, Phys. Rev. Lett. 54, 1321 (1985).CrossRefADSGoogle Scholar
  24. [20]
    A. J. Bray, Phys. Rev. Lett. 60, 720 (1988), J. Phys. A 22, L81 (1989)CrossRefADSMathSciNetGoogle Scholar
  25. [20a]
    D. Dhar, M. Randeira and J. P. Sethna, Europhys. Lett. 5, 485 (1988).ADSCrossRefGoogle Scholar
  26. [21]
    A. T. Ogielski, Phys. Rev. B 32, 7384 (1985)CrossRefADSGoogle Scholar
  27. [21a]
    H. Takano and S. Miyashita, J. Phys. Soc. Jap. 64, 423 (1995).CrossRefADSGoogle Scholar
  28. [22]
    S. Jain, J. Phys. C 21, L1045 (1988)Google Scholar
  29. [22a]
    H. Takano, S. Miyashita, J. Phys. Soc. Jap. 58, 3871 (1989); V. B. Andreichenko, W. Selke and A. L. Talapov, J. Phys. A 25, L283 (1992); P. Grassberger, preprint (1996).CrossRefADSGoogle Scholar
  30. [23]
    Experimentally one finds qualitative indications for the existence of a classical Griffiths phase e.g. in diluted (anti)ferromagnets see: Ch. Binek and W. Kleemann, Phys. Rev. B 51, 12888 (1995).CrossRefADSGoogle Scholar
  31. [24]
    For an investigation of the probability distribution of local relaxation times in classical spin glasses within the Griffiths phase see: H. Takayama, T. Komori and K. Hukushima, in Coherent Approach to Fluctuations, ed. M. Suzuki and N. Kawashima, p. 155 (World Scientific, Singapore, 1996); ibid. H. Takano and S. Miyashita, p. 217.Google Scholar
  32. [25]
    E. Lieb, T. Schultz and D. Mattis, Ann. Phys. (NY) 16, 407 (1961).zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. [26]
    Y. Imry, Phys. Rev. B 15, 4448 (1977).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Heiko Rieger
    • 1
  • A. Peter Young
    • 2
  1. 1.HLRZ c/o Forschungszentrum JülichJülichGermany
  2. 2.Department of PhysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations