Glass transition in the hard sphere system

  • Chandan Dasgupta
  • Oriol T. Valls
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)


The glass transition in a hard sphere system is studied numerically, using a model free energy functional that exhibits glassy local minima at sufficiently high densities. The numerical methods used in our work include free-energy minimization, direct integration of Langevin equations and Monte Carlo simulation. At relatively low densities, the system is found to fluctuate near the uniform liquid minimum of the free energy and to exhibit mode-coupling behavior. At densities higher than a first crossover density, the dynamics is governed by thermally activated transitions between glassy free-energy minima. The typical time scale for such transitions grows very rapidly as a second crossover density is approached from below. Interpretation of existing molecular dynamics data in the light of our results is discussed.


Free Energy Glass Transition Langevin Equation Mode Coupling Theory Langevin Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angell C. A. (1988): J. Phys. Chem. Solids, 49, 863.CrossRefADSGoogle Scholar
  2. Binder K., Young A. P. (1986): Rev. Mod. Phys. 58, 881.CrossRefADSGoogle Scholar
  3. Das, S. P., Mazenko, G. F. (1986): Phys. Rev. A 34, 2265.CrossRefADSGoogle Scholar
  4. Dasgupta C. (1992): Eur. Lett. 20, 31.CrossRefGoogle Scholar
  5. Dasgupta C., Ramaswamy R. (1992): Physica A 186, 314.CrossRefADSGoogle Scholar
  6. Dasgupta C., Valls O. T. (1994): Phys. Rev. E 50, 3916.CrossRefADSGoogle Scholar
  7. Dasgupta C., Valls O. T. (1996): Phys. Rev. E 53, 2603.CrossRefADSGoogle Scholar
  8. Farrell J. E., Valls O. T. (1989): Phys. Rev. A 40, 7027.ADSGoogle Scholar
  9. Ghosh S. S., Dasgupta C. (1996): Phys. Rev. Lett. (in press).Google Scholar
  10. Götze W. (1988): Liquids, Freezing and the Glass Transition, eds D. Levesque, J. P. Hansen and J. Zinn-Justin (Elsevier, New York).Google Scholar
  11. Hansen J.P., MacDonald I. R. (1986): Theory of simple liquids (Academic, London).Google Scholar
  12. Lust L. M., Valls O. T., Dasgupta C. (1993): Phys. Rev. E 48, 1787.CrossRefADSGoogle Scholar
  13. Lust L. M., Valls O. T., Dasgupta C. (1994): Phase Transitions, 50, 47.CrossRefGoogle Scholar
  14. Ramakrishnan T. V., Yussouff M. (1979): Phys. Rev. B 19, 2275.CrossRefADSGoogle Scholar
  15. Valls O. T., Dasgupta C. (1995): Transp. Theor. and Stat. Phys. 24, 1199.zbMATHCrossRefADSGoogle Scholar
  16. Wolynes P. G. (1988): Proceedings of International Symposium on Frontiers in Science, (AIP Conf. Proc. No. 180), eds. S. S. Chen and P. G. Debrunner (AIP, New York).Google Scholar
  17. Woodcock L. V. (1981): Ann. N.Y. Acad. Sci. 371, 274.ADSGoogle Scholar
  18. Woodcock L. V., Angell C. A. (1981): Phys. Rev. Lett. 47, 1129.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Chandan Dasgupta
    • 1
    • 3
  • Oriol T. Valls
    • 2
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.School of Physics and Astronomy and Minnesota Supercomputer InstituteUniversity of MinnesotaMinneapolis
  3. 3.Jawaharlal Nehru Center for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations