Advertisement

An ideal glass transition in supercooled water?

  • F. Sciortino
  • S. H. Chen
  • P. Gallo
  • P. Tartaglia
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 492)

Abstract

Analyzing recent molecular dynamics simulations in deeply supercooled liquid states, we have found that the single particle dynamics in water can be interpreted in terms of Mode Coupling Theory, in its so-called ideal formulation. In this paper we review such evidence and discuss the relevance of this finding for the debated thermodynamic behavior of supercooled water. The experimental apparent power-law behavior of the transport coefficients in water, diverging or going to zero at the so-called Angell temperature could indeed be interpreted as a kinetic, as distinct from thermodynamic, phenomena. This finding removes the need of a thermodynamic singularity for the explanation of the anomalies of liquid water. We also comment on the development of a significant harmonic dynamics on cooling the liquid, which could indicate a transition from a fragile to a strong behavior in liquid water.

Keywords

Anharmonic Oscillation Mode Coupling Theory Supercooled Water Harmonic System Supercooled Liquid State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Leutheusser, Phys. Rev. A, 29, 2765 (1984)CrossRefADSGoogle Scholar
  2. [1a]
    U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C 17 5915 (1984).CrossRefADSGoogle Scholar
  3. [2]
    W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).CrossRefGoogle Scholar
  4. [3]
    W. Götze and A. Sjögren, Transport Theory and Statistical Physics 24, 801 (1995).zbMATHCrossRefGoogle Scholar
  5. [4]
    W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995) and Phys. Rev. E 52B, 4134 (1995).CrossRefADSGoogle Scholar
  6. [5]
    W. Kob, Ann. Rev. Comp. Physics, Vol III, D. Stauffer Editor, World Scientific 1995.Google Scholar
  7. [6]
    C.A. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983).CrossRefADSGoogle Scholar
  8. [7]
    C.A. Angell, in Water: A Comprehensive Tretise, Ed. F. Franks (Plenum, New York, 1981), Ch. 1.Google Scholar
  9. [8]
    P. G. Debenedetti, Metastable Liquids (Princeton University Press, 1996), in press.Google Scholar
  10. [9]
    R.J. Speedy, J. Chem. Phys. 86, 982 (1982).CrossRefGoogle Scholar
  11. [10]
    R.J. Speedy and C.A. Angell, J. Chem. Phys. 65, 851 (1976).CrossRefADSGoogle Scholar
  12. [11]
    A. P. Sokolov, J. Hurst and D. Quitmann, Phys. Rev. B 51, 12865 (1995).CrossRefADSGoogle Scholar
  13. [12]
    P. Gallo, F. Sciortino, P. Tartaglia, S. H. Chen, Phys. Rev. Letts. 76 2730 (1996).CrossRefADSGoogle Scholar
  14. [13]
    F. Sciortino, P. Gallo, P. Tartaglia, S. H. Chen, Phys. Rev. E xx, xxxx (1996).Google Scholar
  15. [14]
    T. Odagaki and Y. Hiwatari, Phys. Rev. A 43, 1103 (1991).CrossRefADSGoogle Scholar
  16. [15]
    T. Odagaki, Phys. Rev. Lett 75, 3701 (1995).CrossRefADSGoogle Scholar
  17. [16]
    L. A. Baez and P. Clancy, J. Chem. Phys. 101, 9837 (1994).CrossRefADSGoogle Scholar
  18. [17]
    E. W. Lang and H. D. Lüdemann, Angew. Chem. Int. Ed. Engl. 21, 315 (1982).CrossRefGoogle Scholar
  19. [18]
    B. Madan, T. Keyes and G. Seeley, J. Chem. Phys. 92 7565, (1990).CrossRefADSGoogle Scholar
  20. [18a]
    B. Madan, T. Keyes and G. Seeley, ibidem 94 6762, (1991)CrossRefADSGoogle Scholar
  21. [19]
    F. Sciortino and S. Sastry, J. Chem. Phys. 100, 3881 (1994).CrossRefADSGoogle Scholar
  22. [20]
    The SPC/E model is a rigid model with constrains on the oxygen-hydrogen bond and hydrogen-oxygen-hydrogen angle. Thus, each molecule contributes only 6 degree of freedom.Google Scholar
  23. [21]
    G. H. Vineyard, Phys. Rev. A 110, 999 (1958).CrossRefADSGoogle Scholar
  24. [22]
    C. A. Angell Science 267 1924 (1995).CrossRefADSGoogle Scholar
  25. [23]
    W. Götze and L. Sjögren, special issue of Chem. Phys on Rate processes with kinetic parameters distributed in time and space Y.A. Berlin, J.R. Miller and A. Plonka Editors, in press (1996)Google Scholar
  26. [24]
    C. A. Angell in Relaxations in Complex Systems, edited by K. Ngai and G. B. Wright. (National Technical Information Service, U.S. Dept. of Commerce: Springfield, VA, 1985) p. 1; C. A. Angell, J. Non-Cryst. Solids 13, 131.Google Scholar
  27. [25]
    C. A. Angell, J. Phys. Chem. 97, 6339 (1993).CrossRefGoogle Scholar
  28. [26]
    S. Sastry, P. G. Debenedetti, F. Sciortino and H.E. Stanley, Phys. Rev. E, 53 6144 (1996).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • F. Sciortino
    • 1
  • S. H. Chen
    • 2
  • P. Gallo
    • 2
  • P. Tartaglia
    • 1
  1. 1.Dipartimento di Fisica and Istituto Nazionale per la Fisica della MateriaUniversitá di Roma La SapienzaRomaItaly
  2. 2.Department of Nuclear EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations