Skip to main content

An ideal glass transition in supercooled water?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 492))

Abstract

Analyzing recent molecular dynamics simulations in deeply supercooled liquid states, we have found that the single particle dynamics in water can be interpreted in terms of Mode Coupling Theory, in its so-called ideal formulation. In this paper we review such evidence and discuss the relevance of this finding for the debated thermodynamic behavior of supercooled water. The experimental apparent power-law behavior of the transport coefficients in water, diverging or going to zero at the so-called Angell temperature could indeed be interpreted as a kinetic, as distinct from thermodynamic, phenomena. This finding removes the need of a thermodynamic singularity for the explanation of the anomalies of liquid water. We also comment on the development of a significant harmonic dynamics on cooling the liquid, which could indicate a transition from a fragile to a strong behavior in liquid water.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Leutheusser, Phys. Rev. A, 29, 2765 (1984)

    Article  ADS  Google Scholar 

  2. U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C 17 5915 (1984).

    Article  ADS  Google Scholar 

  3. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  4. W. Götze and A. Sjögren, Transport Theory and Statistical Physics 24, 801 (1995).

    Article  MATH  Google Scholar 

  5. W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995) and Phys. Rev. E 52B, 4134 (1995).

    Article  ADS  Google Scholar 

  6. W. Kob, Ann. Rev. Comp. Physics, Vol III, D. Stauffer Editor, World Scientific 1995.

    Google Scholar 

  7. C.A. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983).

    Article  ADS  Google Scholar 

  8. C.A. Angell, in Water: A Comprehensive Tretise, Ed. F. Franks (Plenum, New York, 1981), Ch. 1.

    Google Scholar 

  9. P. G. Debenedetti, Metastable Liquids (Princeton University Press, 1996), in press.

    Google Scholar 

  10. R.J. Speedy, J. Chem. Phys. 86, 982 (1982).

    Article  Google Scholar 

  11. R.J. Speedy and C.A. Angell, J. Chem. Phys. 65, 851 (1976).

    Article  ADS  Google Scholar 

  12. A. P. Sokolov, J. Hurst and D. Quitmann, Phys. Rev. B 51, 12865 (1995).

    Article  ADS  Google Scholar 

  13. P. Gallo, F. Sciortino, P. Tartaglia, S. H. Chen, Phys. Rev. Letts. 76 2730 (1996).

    Article  ADS  Google Scholar 

  14. F. Sciortino, P. Gallo, P. Tartaglia, S. H. Chen, Phys. Rev. E xx, xxxx (1996).

    Google Scholar 

  15. T. Odagaki and Y. Hiwatari, Phys. Rev. A 43, 1103 (1991).

    Article  ADS  Google Scholar 

  16. T. Odagaki, Phys. Rev. Lett 75, 3701 (1995).

    Article  ADS  Google Scholar 

  17. L. A. Baez and P. Clancy, J. Chem. Phys. 101, 9837 (1994).

    Article  ADS  Google Scholar 

  18. E. W. Lang and H. D. Lüdemann, Angew. Chem. Int. Ed. Engl. 21, 315 (1982).

    Article  Google Scholar 

  19. B. Madan, T. Keyes and G. Seeley, J. Chem. Phys. 92 7565, (1990).

    Article  ADS  Google Scholar 

  20. B. Madan, T. Keyes and G. Seeley, ibidem 94 6762, (1991)

    Article  ADS  Google Scholar 

  21. F. Sciortino and S. Sastry, J. Chem. Phys. 100, 3881 (1994).

    Article  ADS  Google Scholar 

  22. The SPC/E model is a rigid model with constrains on the oxygen-hydrogen bond and hydrogen-oxygen-hydrogen angle. Thus, each molecule contributes only 6 degree of freedom.

    Google Scholar 

  23. G. H. Vineyard, Phys. Rev. A 110, 999 (1958).

    Article  ADS  Google Scholar 

  24. C. A. Angell Science 267 1924 (1995).

    Article  ADS  Google Scholar 

  25. W. Götze and L. Sjögren, special issue of Chem. Phys on Rate processes with kinetic parameters distributed in time and space Y.A. Berlin, J.R. Miller and A. Plonka Editors, in press (1996)

    Google Scholar 

  26. C. A. Angell in Relaxations in Complex Systems, edited by K. Ngai and G. B. Wright. (National Technical Information Service, U.S. Dept. of Commerce: Springfield, VA, 1985) p. 1; C. A. Angell, J. Non-Cryst. Solids 13, 131.

    Google Scholar 

  27. C. A. Angell, J. Phys. Chem. 97, 6339 (1993).

    Article  Google Scholar 

  28. S. Sastry, P. G. Debenedetti, F. Sciortino and H.E. Stanley, Phys. Rev. E, 53 6144 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Rubí Conrado Pérez-Vicente

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Sciortino, F., Chen, S.H., Gallo, P., Tartaglia, P. (1997). An ideal glass transition in supercooled water?. In: Rubí, M., Pérez-Vicente, C. (eds) Complex Behaviour of Glassy Systems. Lecture Notes in Physics, vol 492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104819

Download citation

  • DOI: https://doi.org/10.1007/BFb0104819

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63069-2

  • Online ISBN: 978-3-540-69123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics