Theory of dynamical affine and conformal symmetries as the theory of the gravitational field

  • A. B. Borisov
  • V. I. Oglevetskii
Selected Works And List Of Main Publications Of V.I. Ogievetsky
Part of the Lecture Notes in Physics book series (LNP, volume 524)


Invariance under the infinite-parameter generally covariant group is equivalent to simultaneous invariance under the affine and the conformal group. A nonlinear realization of the affine group (with linearization on the Poincaré group) leads to a symmetric tensor field as Goldstone field. The requirement that the theory correspond simultaneously to a realization of the conformal group as well leads uniquely to the theory of a tensor field whose equations are Einstein’s. This shows that the theory of the gravitational field is the theory of spontaneous breaking of affine and conformal symmetries in the same way as chiral dynamics is the theory of spontaneous breaking of chiral symmetry. This analogy brings out new aspects of the role of gravitation in the theory of elementary particles.


Covariant Derivative Gravitational Field Conformal Symmetry Lorentz Group Tensor Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Weinberg, 1970 Brandels Lectures, Cambridge (1970).Google Scholar
  2. 2.
    S. Coleman, J. Wess, and B. Zumino, Phys. Rev., 177, 2239 (1969)CrossRefADSGoogle Scholar
  3. 2a.
    D. V. Volkov, Preprint ITF 69–75 [in Russian], Klev (1969)Google Scholar
  4. 2b.
    C. Isham, Nuovo Clm., 59A, 356 (1969).MathSciNetCrossRefADSGoogle Scholar
  5. 3.
    V. I. Oglevetsky, Lett. Nuovo Clm., 8, 988 (1973).CrossRefGoogle Scholar
  6. 4.
    A. Salam and J. Strathdee, Phys. Rev., 184, 1750 (1969).CrossRefADSMathSciNetGoogle Scholar
  7. 5.
    C. Isham, A. Salam, and J. Strathdee, Ann. Phys. (New York), 62.’3 (1971).Google Scholar
  8. 6.
    D. V. Volkov, ÉChAYa, 4, 3 (1973)Google Scholar
  9. 6a.
    D. V. Volkov and V. P. Akulov, Zh. Éksp. Teor. Fiz. Pls’ma Red., 16, 621 (1972).ADSGoogle Scholar
  10. 7.
    V. Oglevetsky, 10th Winter School of Theor. Phys., Karpach, Poland (1973).Google Scholar
  11. 8.
    V. I. Ogievetskil and I. V. Polubarinov, Zh. Éksp. Teor. Fiz., 48, 1625 (1965)Google Scholar
  12. 8a.
    V. Ogievetsky and I. Polubarinov, Ann. Phys. (New York), 35, 167 (1965).CrossRefADSGoogle Scholar
  13. 9.
    É. Cartan, Geometry of Lle Groups and Symmetric Spaces [Russian translation], IL, (1949).Google Scholar
  14. 10.
    L. D. Landau and E. Lifshitz, The Classical Theory of Fields, Addison-Wesley, Cambridge. Mass. (1951).Google Scholar
  15. 11.
    A. Trautman, Reports of Math. Phys., No. 1, 29 (1970).Google Scholar
  16. 12.
    C. Isham and A. Salam, Lett. Nuovo Clm., 5, 969 (1972).MathSciNetCrossRefGoogle Scholar
  17. 13.
    S. Weinberg, Phys. Rev., 177, 2064 (1969)CrossRefGoogle Scholar
  18. 13a.
    V. Oglevetsky, Phys. Lett., 33B, 227 (1970)ADSGoogle Scholar
  19. 13b.
    Problems of Modern Physics. Collection of Papers Dedicated to the Memory of I. E. Tamm [in Russian], Nauka (1972), p. 224.Google Scholar
  20. 14.
    M. Gell-Mann, Phys. Rev. Lett., 14, 77 (1965)CrossRefADSMathSciNetGoogle Scholar
  21. 14a.
    Y. Dothan, M. Gell-Mann, and Y. Neeman, Phys. Lett., 17, 148 (1965).CrossRefADSMathSciNetGoogle Scholar
  22. 15.
    L. Biedenharn, R. Cusson, M. Han, and O. Weaver, Phys. Lett., 42B, 257 (1972).ADSGoogle Scholar
  23. 16.
    G’t. Hooft and M. Veltman, Preprint TH-1723, CERN (1973).Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. B. Borisov
    • 1
  • V. I. Oglevetskii
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna

Personalised recommendations