Characteristic polynomials for quantum matrices

  • A. Isaev
  • O. Ogievetsky
  • P. Pyatov
  • P. Saponov
Quantum Field Theory And Quantum Groups
Part of the Lecture Notes in Physics book series (LNP, volume 524)


A quantum version of the Cayley-Hamilton theorem is found for the matrix T of the generators of the RTT-algebra. In the quasitriangular case, a connection between the characteristic identities in the RTT and RE-algebras is established.


Hopf Algebra Characteristic Polynomial Quantum Analog Quantum Matrix Matrix Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Reshetikhin N., Takhtadjan L. and Faddeev L., Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1 No. 1 (1989) 178–206. English translation in: Leningrad Math. J. 1 (1990) 193–225.Google Scholar
  2. Nazarov M. and Tarasov V., Yangians and Gelfand-Zetlin bases, Publications RIMS 30 (1994) 459–478.zbMATHMathSciNetCrossRefGoogle Scholar
  3. Pyatov P.N. and Saponov P.A., Characteristic Relations for Quantum Matrices, J. Phys. A: Math. Gen., 28 (1995) 4415–4421.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. Gurevich D.I., Pyatov P.N. and Saponov P.A., Hecke Symmetries and Characteristic Relations on Reflection Equation Algebras, Preprint JINR E-95-202, q-alg/9606.Google Scholar
  5. Ewen H., Ogievetsky O. and Wess J., Quantum matrices in two dimensions, Lett. Math. Phys., 22 (1991) 297–305.zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. Gurevich D.I., Algebraic aspects of the quantum Yang-Baxter equation, Algebra i Analiz, 2 (1990) 119–148. English translation in: Leningrad Math. J. 2 (1991) 801–828.zbMATHMathSciNetGoogle Scholar
  7. Maillet J.M., Lax equations and quantum groups, Phys. Lett. B245 (1990) 480–486.ADSMathSciNetGoogle Scholar
  8. Pyatov P.N. and Saponov P.A., Newton relations for quantum matrix algebras of RTT-type, Preprint IHEP 96-76.Google Scholar
  9. Reshetikhin N., Quasitriangular Hopf algebras and invariants of tangles, Algebra i Analiz, 1 No. 2 (1989) 169–188. English translation in: Leningrad Math. J. 1 (1990) 491–513.MathSciNetGoogle Scholar
  10. Reshetikhin N.Yu. and Semenov-Tian-Shansky M.A., Quantum R-matrices and factorization problem, Geometry and Physics 5 No.4 (1988) 533–550.zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. Drinfeld V.G., On almost cocommutative Hopf algebras, Algebra i Analiz, 1 No. 2 (1989) 30–46. English translation in: Leningrad Math. J. 1 (1990) 321–342.MathSciNetGoogle Scholar
  12. Schupp P., Watts P. and Zumino B., Bicovariant quantum algebras and quantum Lie algebras, Comm.Math.Phys. 157 (1993) 305–329.zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. Isaev
    • 1
  • O. Ogievetsky
    • 2
    • 3
  • P. Pyatov
    • 1
  • P. Saponov
    • 4
  1. 1.Bogoliubov Laboratory of Theoretical Physics, JINRDubna Moscow Reg.Russia
  2. 2.Center of Theoretical Physics, LuminyMarseilleFrance
  3. 3.Theoretical DepartmentP. N. Lebedev Physical InstituteMoscowRussia
  4. 4.Theory Department, IHEPProtvino, Moscow regionRussia

Personalised recommendations