Advertisement

From LG to a butterfly resolution of unitary N=2 representations

  • Alexei Semikhatov
Supersymmetric Quantum Mechanics And Integrable Systems
Part of the Lecture Notes in Physics book series (LNP, volume 524)

Abstract

I review free-field resolutions of unitary representations of the N=2 superconformal algebra. The one-screening resolution is related to the representation theory picture of “gravitational descendants.” The realization with two fermionic screenings gives rise to a “butterfly” resolution.

Keywords

Unitary Representation Singular Vector Verma Module Superconformal Algebra Screening Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, D. and G. Felder (1990): Commun. Math. Phys. 127, 145–168.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. Bershadsky, M., W. Lerche, D. Nemeschansky, and N.P. Warner (1993): Nucl. Phys. B401, 304.CrossRefADSMathSciNetGoogle Scholar
  3. Boucher, W., D. Friedan, and A. Kent (1986): Phys. Lett. B172, 316–322.ADSMathSciNetGoogle Scholar
  4. Dijkgraaf, R., E. Verlinde, and H. Verlinde (1991): Nucl. Phys. B352, 59.CrossRefADSMathSciNetGoogle Scholar
  5. Eguchi, T., H. Kanno, Y. Yamada and S.-K. Yang (1993): Phys. Lett. B305, 235.ADSMathSciNetGoogle Scholar
  6. Feigin, B.L. and E.V. Frenkel (1990): Representations of Affine Kac-Moody Algebras and Bosonization, in: Physics and Mathematics of Strings, eds. L. Brink, D. Friedan, and A.M. Polyakov, World Sci.Google Scholar
  7. B.L. Feigin and E.V. Frenkel, Commun. Math. Phys. 128 (1990) 161–189.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. Feigin, B.L., A.M. Semikhatov, and I.Yu. Tipunin (1997): Equivalence between Chain Categories of Representations of Affine s sl(2) and N=2 Superconformal Algebras, hep-th/9701043.Google Scholar
  9. Feigin, B.L., A.M. Semikhatov, V.A. Sirota, and I.Yu. Tipunin (1998): Resolutions and Characters of Irreducible Representations of the N=2 Superconformal Algebra, hep-th/9805179.Google Scholar
  10. Feigin, B.L. and A.M. Semikhatov (1998): Free-Field Resolutions of the Unitary N=2 Representations, to appear.Google Scholar
  11. Felder, G. (1989): Nucl. Phys. B317, 215, E: B324, 548 (1989).CrossRefADSMathSciNetGoogle Scholar
  12. Fré, P., L. Girardello, A. Lerda, and P. Soriani (1992): Nucl. Phys. B387, 333.CrossRefADSGoogle Scholar
  13. Gato-Rivera, B., and A.M. Semikhatov (1992): Phys. Lett. B293, 72.ADSMathSciNetGoogle Scholar
  14. Ito, K., (1992): Nucl. Phys. B370, 123.CrossRefADSGoogle Scholar
  15. Kawai, T., Y. Yamada, and S.-K. Yang (1994): Nucl. Phys. B414, 191.ADSMathSciNetGoogle Scholar
  16. Lerche, W., Generalized Drinfeld-Sokolov Hierarchies, Quantum Rings, and W-Gravity, Nucl. Phys. B434 (1995) 445–474.CrossRefADSMathSciNetGoogle Scholar
  17. Lerche, W., C. Vafa, and N.P. Warner (1989): Nucl. Phys. B324 427.CrossRefADSMathSciNetGoogle Scholar
  18. Lossev (Losev), A.S. (1992): Descendants Constructed from Matter Field and K. Saito Higher Residue Pairing in Landau-Ginzburg Theories Coupled to Topological Gravity, hep-th/9211090.Google Scholar
  19. Lerche, W. and N.P. Warner (1994): On the Algebraic Structure of Gravitational Descendants in CP(n − 1) Coset Models, hep-th/9409069.Google Scholar
  20. Mussardo, G., G. Sotkov, and M. Stanishkov (1989): Int. J. Mod. Phys. A4, 1135.ADSMathSciNetGoogle Scholar
  21. Nemeschansky, D. and N.P. Warner (1995): Nucl. Phys. B442, 623.CrossRefADSMathSciNetGoogle Scholar
  22. Ohta, N. and H. Suzuki (1990): Nucl. Phys. B332, 146.CrossRefADSMathSciNetGoogle Scholar
  23. Schwimmer, A. and N. Seiberg (1987): Phys. Lett. B184, 191.ADSMathSciNetGoogle Scholar
  24. Semikhatov, A.M. and I.Yu. Tipunin (1998): Commun. Math. Phys., 195, 129–173.zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. Semikhatov, A.M. and I.Yu. Tipunin (1996): All Singular Vectors of the N = 2 Superconformal Algebra via the Algebraic Continuation Approach, hep-th/9604176.Google Scholar
  26. Witten, E. (1994): Int. J. Mod. Phys. A9, 4783.ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Alexei Semikhatov
    • 1
  1. 1.Tamm Theory Division, Lebedev Physics InstituteRussian Academy of SciencesUSSR

Personalised recommendations