Advertisement

Harmonic approach and quaternionic Taub-NUT metric

  • Evgeny Ivanov
  • Galliano Valent
Superspace Approach To Supersymmetry
Part of the Lecture Notes in Physics book series (LNP, volume 524)

Abstract

We use the harmonic space technique to construct explicitly a quaternionic extension of the Taub-NUT metric. It depends on two parameters, the first being the Taub-NUT ‘mass’ and the second one the cosmological constant. We compare the metric constructed with those available in the literature.

Keywords

Holonomy Group Harmonic Space Harmonic Extension Harmonic Superspace Analytic Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, Class. Quantum Grav. 1 (1984) 469.CrossRefADSMathSciNetGoogle Scholar
  2. A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Commun. Math. Phys. 103 (1986) 515.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Ann. Phys. (N.Y.) 185 (1988) 22.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. A. Galperin, E. Ivanov and O. Ogievetsky, Ann. Phys. (N.Y.) 230 (1994) 201.zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. T. Eguchi, B. Gilkey and J. Hanson, Physics Reports, 66, No. 6 (1980) 213.CrossRefADSMathSciNetGoogle Scholar
  6. J.A. Bagger, A.S. Galperin, E.A. Ivanov and V.I. Ogievetsky, Nucl. Phys. B 303 (1988) 522.CrossRefADSMathSciNetGoogle Scholar
  7. E. Ivanov, G. Valent, ‘Harmonic Space Construction of the Quaternionic Taub-NUT metric’, in preparation.Google Scholar
  8. A. Galperin, E. Ivanov, V. Ogievetsky and P.K. Townsend, Class. Quantum Grav., 7 (1986) 625.CrossRefADSMathSciNetGoogle Scholar
  9. F. Delduc and G. Valent, Class. Quantum Grav., 10 (1993) 1201.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. B. Carter, Commun. Math. Phys. 10 (1968) 280.zbMATHGoogle Scholar
  11. T. Chave and G. Valent, Class. Quantum Grav., 13 (1996) 2097.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. H. Pedersen, Math. Ann., 274 (1986) 35.zbMATHCrossRefMathSciNetGoogle Scholar
  13. G. Gibbons and S.W. Hawking, Phys. Lett., B 78 (1978) 430.ADSGoogle Scholar
  14. S.W. Hawking, G.C. Hunter and D.N. Page, ‘Nut Charge, Anti-de Sitter Space and Entropy’, hep-th/9809035.Google Scholar
  15. G.W. Gibbons, D. Olivier, P.J. Ruback and G. Valent, Nucl. Phys., B 296 (1988) 679.CrossRefADSMathSciNetGoogle Scholar
  16. K.S. Stelle, ‘BPS Branes in Supergravity’, CERN-TH/98-80, Imperial/TP/97-98/30; hep-th/9803116.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Evgeny Ivanov
    • 1
  • Galliano Valent
    • 2
  1. 1.Bogoliubov Laboratory of Theoretical Physics, JINR, DubnaMoscow regionRussia
  2. 2.Laboratoire de Physique Théorique et des Hautes Energies, Unité associée au CNRS URA 280Université Paris 7Paris Cedex 05France

Personalised recommendations