Skip to main content

Physics of light extraction efficiency in planar microcavity light-emitting diodes

  • Conference paper
  • First Online:
Confined Photon Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 531))

Abstract

We use the modifications of spatial mode distributions in planar microcavities to address the issue of light outcoupling in devices such as LEDs. Whereas detailed calculations are needed to fully model and optimize the structures, we show that a simple picture can be obtained that clarifies the main physical effects of the microcavity. In particular, it is shown that the cavity order mc is the chief parameter in determining the extraction efficiency according to η=1/mc under some reasonable, simplifying assumptions. When the source in the cavity has a linewidth, light redistribution among both angles and wavelengths occurs and can either be a limiting factor for the overall extraction efficiency or a positive one in case of spectral narrowing requirements. In extraction-optimized systems, one gains a factor of up to ten on the single-face extraction as well as brightness (radiance).

The present work is supported by the ESPRIT Basic research Project SMILED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. High-Brightness Light-Emitting Diodes, G. B. Stringfellow, and M. G. Craford, eds., (San Diego, Academic Press, 1997) 48.

    Google Scholar 

  2. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction: I. basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).

    Article  ADS  Google Scholar 

  3. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction: II. selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).

    Article  ADS  Google Scholar 

  4. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30-Percent External Quantum Efficiency from Surface Textured, Thin-Film Light-Emitting-Diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).

    Article  ADS  Google Scholar 

  5. I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh Spontaneous Emission Quantum Efficiency, 99.7 % Internally and 72 % Externally, from AlGaAs/GaAs/AlGaAs Double Heterostructures,” Appl. Phys. Lett. 62, 131–133 (1993).

    Article  ADS  Google Scholar 

  6. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).

    Article  ADS  Google Scholar 

  7. G. Björk, “On the Spontaneous Lifetime Change in an Ideal Planar Microcavity — Transition from a Mode Continuum to Quantized Modes,” IEEE J. Quantum Electron. QE30, 2314–2318 (1994).

    Article  ADS  Google Scholar 

  8. S. D. Brorson, H. Yokoyama, and E. Ippen, “Spontaneous emission rate alteration in optical waveguide structures,” IEEE J. Quantum Electron. 26, 1492–1499 (1990).

    Article  ADS  Google Scholar 

  9. S. D. Brorson, in Spontaneous emission and laser oscillation in microcavities, ed. H. Yokoyama, and K. Ujihara. Laser and Optical Science and Technology Series, (Boca Raton, CRC Press, 1995) 151–188.

    Google Scholar 

  10. A. Kastler, “Atomes à I’intérieur d’un interféromètre Perot-Fabry,” Applied Optics 1, 17–24 (1962).

    Article  ADS  Google Scholar 

  11. J. Blondelle, H. De Neve, G. Borghs, P. Vandaele, P. Demeester, and R. Baets, “High efficiency (>20%) microcavity LEDs,”, (IEE Topical Meeting, London, 1996).

    Google Scholar 

  12. J. Blondelle, “Realisation of high-efficiency substrate-emitting InGaAs/(Al)GaAs microcavity LEDs by means of MOCVD” Ph. D Thesis. University of Gent, 1997.

    Google Scholar 

  13. H. De Neve, J. Blondelle, P. Vandaele, P. Demeester, R. Baets, and G. Borghs, “Planar substrate-emitting microcavity light emitting diodes with 20% external QE”, (San Jose, California: 1997), 74–84.

    Google Scholar 

  14. H. De Neve, J. Blondelle, P. Vandaele, P. Demeester, R. Baets, and G. Borghs, “Recycling of guided mode light emission in planar microcavity light emitting diodes,” Appl. Phys. Lett. 70, 799–801 (1997).

    Article  ADS  Google Scholar 

  15. N. E. J. Hunt, et al., in Confined Electrons and Photons, ed. E. Burstein, and C. Weisbuch, (New-York, Plenum Press, 1995) 703–714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Benisty Claude Weisbuch École Polytechnique Jean-Michel Gérard Romuald Houdré John Rarity

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Benisty, H. (1999). Physics of light extraction efficiency in planar microcavity light-emitting diodes. In: Benisty, H., Weisbuch, C., Polytechnique, É., Gérard, JM., Houdré, R., Rarity, J. (eds) Confined Photon Systems. Lecture Notes in Physics, vol 531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104390

Download citation

  • DOI: https://doi.org/10.1007/BFb0104390

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66435-2

  • Online ISBN: 978-3-540-48313-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics