Nested high-resolution modelling of the greenland summit region

Large Ice Masses: Ice Sheets, Sea Ice
Part of the Lecture Notes in Physics book series (LNP, volume 533)


The dynamics and thermodynamics of the vicinity of Summit, the highest point of the Greenland ice sheet at 72° 34′N, 37° 38′W, is simulated over two climate cycles until the present with a high-resolution regional model coupled to a large-scale model of the entire Greenland ice sheet. For the computation of the age of ice, two different methods are applied, an Eulerian scheme which solves the advective age equation in a frame fixed in space and requires some artificial diffusion, and a Lagrangian particle-tracing scheme which follows the motion of ice particles and is diffusion-free. The transient simulation is based on the shallow-ice approximation which neglects normal stress deviators and shear stresses in vertical planes. For the simulated modern ice sheet, the velocity and stress fields are then re-computed in the Summit region by a first-order algorithm which includes these stresses. The measured ice topography as well as the temperature profiles of the boreholes GRIP and GISP2 are reproduced very well. The simulated Summit motion of 16 ice thicknesses during the last 250,000 years gives a clue for understanding the origin of irregularities observed in the GRIP and GISP2 cores. In a 50 km region around Summit, all stresses are of the same order of magnitude, so that a very precise modelling of the ice dynamics, which is necessary for an accurate ice-core dating, requires that the shallow-ice approximation be locally abandoned.


Surface Mass Balance Summit Region Horizontal Shear Stress Geothermal Heat Flux Normal Stress Deviator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, O. (1999) Dynamics of glaciers and ice sheets: a numerical model study. Ph.D. thesis in preparation, Geographisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland.Google Scholar
  2. 2.
    Alley, R. B., A. J. Gow, S. J. Johnsen, J. Kipfstuhl, D. A. Meese and T. Thorsteinsson (1995) Comparison of deep ice cores. Nature, 373, 393–394.CrossRefADSGoogle Scholar
  3. 3.
    Baral, D. R. (1999) Asymptotic theories of large-scale motion, temperature and moisture distributions in land-based polythermal ice shields and in floating ice shelves — A critical review and new developments. Ph.D. thesis in preparation, Institut für Mechanik, Technische Universität Darmstadt, Germany.Google Scholar
  4. 4.
    Blatter, H. (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41 (138), 333–344.ADSGoogle Scholar
  5. 5.
    Bolzan, J. F. and M. Strobel (1994) Accumulation-rate variations around Summit, Greenland. J. Glaciol., 40 (134), 56–66.ADSGoogle Scholar
  6. 6.
    Calov, R., A. Savvin, R. Greve, I. Hansen and K. Hutter (1998) Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. Ann. Glaciol., 27, 201–206.ADSGoogle Scholar
  7. 7.
    Cuffey, K. M., G. D. Clow, R. B. Alley, M. Stuiver, E. D. Waddington and R. W. Saltus (1995) Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270, 455–458.CrossRefADSGoogle Scholar
  8. 8.
    Dansgaard, W. and S. J. Johnsen (1969) A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol., 8 (53), 215–223.ADSGoogle Scholar
  9. 9.
    Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjörnsdottir, J. Jouzel and G. Bond (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.CrossRefADSGoogle Scholar
  10. 10.
    Fowler, A. C. and D. A. Larson (1978) On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond., A 363, 217–242.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Glen, J. W. (1955) The creep of polycrystalline ice. Proc. R. Soc. Lond., A 228, 519–538.ADSCrossRefGoogle Scholar
  12. 12.
    Greve, R. (1997a) A continuum-mechanical formulation for shallow polythermal ice sheets. Phil. Trans. R. Soc. Lond., A 355, 921–974.CrossRefADSzbMATHGoogle Scholar
  13. 13.
    Greve, R. (1997b) Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet: Response to steady-state and transient climate scenarios. J. Climate, 10 (5), 901–918.CrossRefADSGoogle Scholar
  14. 14.
    Greve, R. (1997c) Large-scale ice-sheet modelling as a means of dating deep ice cores in Greenland J. Glaciol., 43, (144), 307–310; Erratum 43 (145), 597–600.ADSGoogle Scholar
  15. 15.
    Greve, R., M. Weis and K. Hutter (1998) Palaeoclimatic evolution and present conditions of the Greenland Ice Sheet in the vicinity of Summit: An approach by large-scale modelling. Paleoclimates, 2 (2–3), 133–161.Google Scholar
  16. 16.
    Hodge, S. M., D. L. Wright, J. A. Bradley, R. W. Jacobel, N. Skou and B. Vaughan (1990) Determination of the surface and bed topography in Central Greenland. J. Glaciol., 36 (122), 17–30.ADSGoogle Scholar
  17. 17.
    Hofmann, W. (1974) Die Internationale Glaziologische Grönland-Expedition EGIG. Z. Gletscherkd. Glazialgeol., 5, 217–224.Google Scholar
  18. 18.
    Hutter, K. (1982) A mathematical model of polythermal glaciers and ice sheets. J. Geophys. Astrophys. Fluid Dyn., 21, 201–224.CrossRefADSzbMATHGoogle Scholar
  19. 19.
    Hutter, K. (1993) Thermo-mechanically coupled ice sheet response. Cold, polythermal, temperate. J. Glaciol., 39 (131), 65–86.ADSGoogle Scholar
  20. 20.
    Huybrechts, P. (1994) The present evolution of the Greenland ice sheet: an assessment by modelling. Global Planet. Change, 9, 39–51.CrossRefADSGoogle Scholar
  21. 21.
    Johnsen, S. J., D. Dahl-Jensen, W. Dansgaard and N. Gundestrup (1995) Greenland palaeotemperatures derived from GRIP borehole temperature and ice core isotope profiles. Tellus, 47B, 624–629.CrossRefGoogle Scholar
  22. 22.
    Letréguilly, A., P. Huybrechts and N. Reeh (1991) Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol. 37 (125), 149–157.ADSGoogle Scholar
  23. 23.
    Meese, D., R. Alley, T. Gow, P. M., Grootes, P. Mayewski, M. Ram, K. Taylor, E. Waddington and G. Zielinski (1994) Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 94-1.Google Scholar
  24. 24.
    Mügge, B. (1998) Eisalterbeerchnung im antarktischen Eisschild mit einem Algorithmus zur Teilchenverfolgung. Diploma thesis, Institut für Mechanik, Technische Universität Darmstadt, Germany.Google Scholar
  25. 25.
    Nye, J. F. (1957) The distribution of stress and velocity in glaciers and ice sheets. Proc. R. Soc. Lond., A 239, 113–133.ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Ohmura, A. and N. Reeh (1991) New precipitation and accumulation maps for Greenland. J. Glaciol., 37, 140–148.ADSGoogle Scholar
  27. 27.
    Paterson, W. S. B. (1994) The physics of glaciers. Third edition. Oxford etc., Pergamon Press, 480 pp.Google Scholar
  28. 28.
    Reeh, N. (1991) Parameterization of melt rate and surface temperature on the Greenland Ice Sheet. Polarforschung, 59 (3), 113–128.Google Scholar
  29. 29.
    Savvin, A. (1999) Grenzschichttheorie nichtlinearer Kriechströmungen und ihre Anwendung auf das EPICA-Vorhaben. Ph.D. thesis, Institut für Mechanik, Technische Universität Darmstadt, Germany.Google Scholar
  30. 30.
    Sowers, T., T. Bender, L. Labeyrie, D. Martinson, J. Jouzel, D. Raynaud, J. J. Pichon and Y. Korotkevich (1993) 135,000 year Vostok-SPECMAP common temporal framework. Paleoceanography, 8, 737–766.ADSCrossRefGoogle Scholar
  31. 31.
    Wilhelms F. (1996) Leitfähigkeits-und Dichtemessung an Eisbohrkernen. Ber. Polarforschung, 191, 224 pp.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  1. 1.Institut für Mechanik IIITechnische Universität DarmstadtDarmstadtGermany
  2. 2.Geographisches InstitutEidgenössische Technische Hochschule ZürichZürichSwitzerland

Personalised recommendations