Skip to main content

Drag reduction by active control for flow past cylinders

  • Chapter
  • First Online:
Computational Mathematics Driven by Industrial Problems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1739))

Abstract

The main objective of this article is to investigate computational methods for the active control and drag optimization of incompressible viscous flow past cylinders, using the two-dimensional Navier-Stokes equations as the flow model. The computational methodology relies on the following ingredients: space discretization of the Navier-Stokes equations by finite element approximations, time discretization by a second order accurate two step implicit/explicit finite difference scheme, calculation of the cost function gradient by the adjoint equation approach, minimization of the cost function by a quasi-Newton method à la BFGS. The above methods have been applied to predict the optimal forcing-control strategies in reducing drag for flow around a circular cylinder using either an oscillatory rotation or blowing and suction. In the case of oscillatory forcing, a drag reduction of 31% at Reynolds number 200 and 61% at Reynolds number 1000 was demonstrated. Using only three blowing-suction slots, we have been able to completely suppress the formation of the Von-Karman vortex street up to Reynolds number 200 with a significant net drag reduction. We conclude this article by an appendix describing a bisection method which allows very substantial storage memory savings at reasonable extra computational time when applying adjoint equation based methodologies to the solution of control problems modeled by time dependent equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Badr, M. Coutanceau, S. C. R. Dennis, and C. Ménard. Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104. J. Fluid Mech., 220:459–484, 1990.

    Article  Google Scholar 

  2. M. Braza, P. Chassaing, and H. H. Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech., 165:79–130, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. M. Badr, S. C. R. Dennis, and P. J. S. Young. Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers. Computers and Fluids, 17(4):579–609, 1989.

    Article  MATH  Google Scholar 

  4. M. Berggren. Numerical solution of a flow-control problem: vorticity reduction by dynamic boundary action. SIAM J. Sci. Comput., 19:829–860, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Elements Methods. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  6. D.M. Buschnell and J.N. Hefner. Viscous Drag Reduction in Boundary Layers. American Institute of Aeronautics and Astronautics, Washington, DC, 1990.

    Book  Google Scholar 

  7. D. Barkley and R. D. Henderson. Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech., 322:215–241, 1996.

    Article  MATH  Google Scholar 

  8. B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech., 98:819–855, 1980.

    Article  MATH  Google Scholar 

  9. O. Ghattas and J.-H. Bark. Optimal control of two-and three-dimensional incompressible Navier-Stokes flows. J. Comput. Phys., 136(2):231–244, 1997.

    Article  MATH  Google Scholar 

  10. R. Glowinski and J. L. Lions. Exact and approximate controllability for distributed parameter systems (Part I). Acta Numerica, Cambridge Univ. Press, pages 269–378, 1994.

    Google Scholar 

  11. R. Glowinski and J. L. Lions. Exact and approximate controllability for distributed parameter systems (Part II). Acta Numerica, Cambridge Univ. Press, pages 159–333, 1995.

    Google Scholar 

  12. V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York, 1986.

    Book  MATH  Google Scholar 

  13. A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automotic differention. Optimization Methods and Software, 1:35–54, 1992.

    Article  Google Scholar 

  14. M. D. Gunzburger. Finite Element Method for Viscous Incompressible Flows: a Guide to Theory, Practice, and Algorithms. Academic Press, Boston, 1989.

    Google Scholar 

  15. M.D. Gunzburger, editor. Flow Control, volume 68 of the IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1995.

    Google Scholar 

  16. M. Gad El Hak. Flow control. Applied Mechanics Reviews, 42:261–292, 1989.

    Article  Google Scholar 

  17. R. D. Henderson. Nonlinear dynamics and patterns in turbulent wake transition. J. Fluid Mech., 352:65–112, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.W. He and R. Glowinski. Neumann control of unstable parabolic systems: numerical approach. J. O. T. A., 96:1–55, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.W. He, R. Glowinski, R. Metcalfe, and J. Periaux. A Numerical Approach to the Control and Stabilization of Advection-Diffusion Systems: Application to Viscous Drag Reduction. Int. J. Comp. Fluid Mech., 11:131–156, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. S. Hou and S. S. Ravindran. Computations of boundary optimal control problems for an electrically conducting fluid. J. Comput. Phys., 128(2):319–330, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Ito and S. S. Ravindran. A reduced-order method for simulation and control of fluid flows. J. Comput. Phys., 143(2):403–425, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. B. Ingham and T. Tang. A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers. J. Comput. Phys., 87:91–107, 1990.

    Article  MATH  Google Scholar 

  23. K. Kwon and H. Choi. Control of laminar vortex shedding behind a circular cylinder. Phys. of Fluids, 8:479–486, 1996.

    Article  MATH  Google Scholar 

  24. G. E. Karniadakis and G. S. Triantafyllou. Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech., 199:441–469, 1989.

    Article  MATH  Google Scholar 

  25. D. C. Liu and J. Nocedal. On the limited memory BFGS method for large optimization. Mathematical Programming, 45:503–528, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Nordlander. Active control and drag optimization for flow past a circular cylinder. Research Report UH/MD 248, Department of Mathematics, University of Houston, Houston, TX 77204-3476, 1998.

    Google Scholar 

  27. O. Pironneau. Finite Element Method for Fluids. John Wiley & Sons, Chichester, England, 1989.

    MATH  Google Scholar 

  28. D. S. Park, D. M. Ladd, and E. W. Hendricks. Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. of Fluids, 6(7):2390–2405, 1994.

    Article  MATH  Google Scholar 

  29. L. Prandtl. The Magnus effect and windpowered ships. Naturwissenschaften, 13:93–108, 1925.

    Article  Google Scholar 

  30. A. Roshko. On the development of turbulent wakes from vortex streets. NACA Rep. 1191, 1954.

    Google Scholar 

  31. A. Roshko. On the wake and drag of bluff bodies. J. Aerosp. Sci., 22:124–132, 1955.

    MATH  Google Scholar 

  32. K. Roussopoulos. Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech., 248:267–296, 1993.

    Article  Google Scholar 

  33. S.S Sritharan, editor. Optimal Control of Viscous Flows. SIAM, 1998.

    Google Scholar 

  34. P. T. Tokumaru and P. E. Dimotakis. Rotary oscillation control of a cylinder wake. J. Fluid Mech., 224:77–90, 1991.

    Article  Google Scholar 

  35. C. H. K. Williamson. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech., 206:579–627, 1989.

    Article  Google Scholar 

  36. D. R. Williams, H. Mansy, and C. Amato. The response and symmetry properties of a cylinder wake subjected to localized surface excitation. J. Fluid Mech., 234:71–96, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rainer E. Burkard Antony Jameson Gilbert Strang Peter Deuflhard Jacques-Louis Lions Vincenzo Capasso Jacques Periaux Heinz W. Engl

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

He, JW., Chevalier, M., Glowinski, R., Metcalfe, R., Nordlander, A., Periaux, J. (2000). Drag reduction by active control for flow past cylinders. In: Burkard, R.E., et al. Computational Mathematics Driven by Industrial Problems. Lecture Notes in Mathematics, vol 1739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103923

Download citation

  • DOI: https://doi.org/10.1007/BFb0103923

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67782-6

  • Online ISBN: 978-3-540-44976-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics