Skip to main content

Bond length-bond valence relationships with particular reference to polyoxometalate chemistry

  • Chapter
  • First Online:
Bonding and Charge Distribution in Polyoxometalates: A Bond Valence Approach

Part of the book series: Structure and Bonding ((STRUCTURE,volume 93))

Abstract

Bond length-bond valence relationships have been investigated fundamentally with emplasis on the M-O bonds in polyoxo compounds (M=MoVI, WVI, VV, NbV, TaV). A large number of errors of different types has been made in the derivation of practically all of the published functions and/or of the relevant parameters. Considering all sources of errors, bond length-bond valence functions and the relevant parameters have been derived which represent more shallow curves than most of the functions in the literature. The relationships have been applied classically for identifying O atoms of an OH group or a coordinated H2O molecle, to elucidate hydrogen bridge systems, to determine the oxidation numbers of M atoms (and to distinguish between different elements via the oxidation numbers), and to verify the coordination numbers assigned to the M atoms, etc. The most important application of the relationship. however, is the calculation of accurate bond valences and in particular the determination of the distribution of the charge over the O atoms of the species. These data can be used to elucidate the relatonships between structure, bonding, stability and basicity of the species. However, most functions and/or the relevant parameters stated in the literature produce errors which are most evident in the calculated formal ionic charges of the species and can involve several charge units. Even the best functions and parameters give unreliable results. A first important reason for this is the unsatisfactory identification of erroneous structural data with large random and/or systematic errors in the bond lengths and their rejection from the set of reference structures used for the derivation of the bond length-bond valence parameters B and d0 or N and d0 of the commonly used exponential or power functions. This makes the correct determination of B or N difficult. A second important reason is connected with the—at present—unfounded practice of using ‘universal’ B or N parameters which leads to errors for the proportion in the bond valencies of the inner (bridging) relative to those in the outer (terminal) M-O bounds of the species and for the charge separations. These quantities affect the stability of the species. A third significant reason, which is independent of and hence present even for correctly derived bond length-bond valence parameters, is a small (and inevitable) systematic error in the bond lengths of each structure determination which leads to larger errors for the formal ionic charge. This error can be completely compensated by individual fitting of the d0 bond length-bond valence parameter for each structural determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauling L (1929) J Am Chem Soc 51: 1010–1026

    Article  CAS  Google Scholar 

  2. Brown ID (1994) Bond-Length-Bond-Valence Relationships in Inorganic Solids, In: Bürgi HB, Dunitz JD (eds), Structure Correlation, vol 2, VCH, Weinheim, pp 405–429. (a) p 407.

    Google Scholar 

  3. Brown ID (1978) Chem Soc Rev 7: 359–376

    Article  CAS  Google Scholar 

  4. Brown ID (1981) The Bond Valence Method: An Empirical Approach to Chemical Structure and Bondin, In: O'Keeffe M., Navrotsky A (eds), Structure and Bonding in Crystals, vol 2, Academic Press, New York, pp 1–30. (a) p 18, (b) pp 2–3

    Google Scholar 

  5. Byström A, Wilhelmi KA (1951) Acta Chem Scand 5: 1003–1010

    Google Scholar 

  6. Zachariasen WH (1954) Acta Crystallogr 7: 795–799

    Article  CAS  Google Scholar 

  7. Evans HT Jr (1960) Z Kristallogr 114: 257–277.

    Article  CAS  Google Scholar 

  8. Allmann R (1975) Monatsh Chem 106: 779–793

    Article  CAS  Google Scholar 

  9. Brown ID, Shannon RD (1973) Acta Crystallogr A 29: 266–282. (a) p 269

    Article  CAS  Google Scholar 

  10. Donnay G, Allmann R (1970) Am Mineral 55: 1003–1015

    CAS  Google Scholar 

  11. Pyatenko YuA (1972) Kristallografiya 17: 773–779; Sov Phys-Crystallogr 17:677–682

    CAS  Google Scholar 

  12. Pauling L (1947) J Am Chem Soc 69: 542–553

    Article  CAS  Google Scholar 

  13. Donnay G, Donnary JDH (1973) Acta Crystallogr B 29: 1417–1425

    Article  CAS  Google Scholar 

  14. O'Keeffe M (1989) Struct Bonding 71: 161–190

    Google Scholar 

  15. Brown ID, Wu KK (1976) Acta Crystallogr B 32: 1957–1959

    Article  Google Scholar 

  16. Brese NE, O'Keeffe M (1991) Acta Crystallogr B 47: 192–197

    Article  Google Scholar 

  17. Brown ID, Altermatt D (1985) Acta Crystallogr B 41: 244–247

    Article  Google Scholar 

  18. Zachriasen WH (1978) J Less-Common Metals 62: 1–7. (a) Waltersson K (1976), cited in [18]

    Article  Google Scholar 

  19. Fink L, Trömel M (1992) Z Kristallogr 200: 169–175

    Article  CAS  Google Scholar 

  20. Chladek S, Trömel M (1993) Z Kristallogr 204: 107–113

    Article  CAS  Google Scholar 

  21. Brown ID (1992) Acta Crystallogr B 48: 553–572

    Article  Google Scholar 

  22. Brown ID (1974) J Solid State Chem 11: 214–233

    Article  CAS  Google Scholar 

  23. D'Amour H, Allmann R (1972) Z Kristallogr 136: 23–47

    Article  Google Scholar 

  24. Allmann R (1971) Acta Crystallogr B 27: 1393–1404

    Article  CAS  Google Scholar 

  25. Krebs B, Paulat-Böschen I (1976) Acta Crystallogr B 32: 1697–1704

    Article  Google Scholar 

  26. Perloff, A (1970) Inorg Chem 9: 2228–2239

    Article  CAS  Google Scholar 

  27. Böschen I, Buss B, Krebs B (1974) Acta Crystallogr B 30: 48–56

    Article  Google Scholar 

  28. Vivier H, Bernard J, Djomaa H (1977) Rev Chim Minerale 14: 584–604

    CAS  Google Scholar 

  29. D'Amour H, Allmann R (1973) Z Kristallogr 138: 5–18

    Google Scholar 

  30. Allmann R, D'Amour H (1975) Z Kristallogr 141: 161–173

    Article  CAS  Google Scholar 

  31. Trömel M (1983) Acta Crystallogr B 39: 664–669

    Article  Google Scholar 

  32. Trömel M (1984) Acta Crystallogr B 40: 338–342

    Article  Google Scholar 

  33. Trömel M (1986) Acta Crystallogr B 42: 138–141

    Article  Google Scholar 

  34. Müller A, Penk M, Krichkmeyer E, Bögge H, Walberg HJ (1988) Angew Chem 100: 1787–1789; Agew Chem Int Ed Engl 27: 1719

    Google Scholar 

  35. Day VW, Klemperer WG (1985) Science 228: 533–541

    Article  CAS  Google Scholar 

  36. Pope MT (1983) Heteropoly and Isopoly Oxometalates, Springer, Berlin (a) pp. 20–21

    Google Scholar 

  37. Day VW, Fredrich MF, Klemperer WG, Shum W (1977) J Am Chem Soc 99: 952–953

    Article  CAS  Google Scholar 

  38. Filowitz M, Klemperer WG, Shum W (1978) J Am Chem Soc 100: 2580–2581

    Article  CAS  Google Scholar 

  39. Klemperer WG (1990) Inorg Synth 27: 71–135; pp 71‐74

    Article  CAS  Google Scholar 

  40. Day VW, Klemperer WG, Yaghi OM (1991) Nature 352: 115–116

    Article  Google Scholar 

  41. Klemperer WG, Shum W (1977) J Am Chem Soc 99: 3544–3545

    Article  CAS  Google Scholar 

  42. Krebs B, Stiller S, Tytko KH, Mehmke J (1991) Eur J Solid State Inorg Chem 28: 883–903.

    CAS  Google Scholar 

  43. Trömel M (1992) Z Kristallogr 200: 177–187

    Article  Google Scholar 

  44. Tytko KH, Mehmke J, Fischer S (1999) Struct Bonding 93: 129–321

    CAS  Google Scholar 

  45. Schröder FA (1975) Acta Crystallogr B 31: 2294–2309

    Article  Google Scholar 

  46. Fuchs J, Knöpnadel I (1982) Z Kristallogr 158: 165–179

    CAS  Google Scholar 

  47. Kihlborg L (1963/64) Arkiv Kemi 21: 471–495

    CAS  Google Scholar 

  48. Tytko KH (1999) Struct Bonding 93: 67–127

    Article  CAS  Google Scholar 

  49. Bart JCJ, Ragaini V (1979) Inorg Chim Acta 36: 261–265

    Article  CAS  Google Scholar 

  50. Fuchs J, Freiwald W, Hartl H (1978) Acta Crystallogr B 34: 1764–1770

    Article  Google Scholar 

  51. Zachariasen WH (1963) Acta Crystallogr 16: 385–389

    Article  CAS  Google Scholar 

  52. Mehmke J (1990) Dissertation, Göttingen; pp 51–52

    Google Scholar 

  53. Bauer WH (1972) Am Mineral 57: 709–731

    Google Scholar 

  54. Alig H, Lösl J, Trömel M (1994) Z Kristallogr 209: 18–21

    Article  CAS  Google Scholar 

  55. Clark JR, Appleman D, Papike J (1969) Miner Soc Am Spec Paper 2: 31–50, from [9]

    Google Scholar 

  56. Wagner TR, O'Keeffe M (1988) J Solid State Chem 73: 211–216

    Article  CAS  Google Scholar 

  57. Román P, Gutirrez-Zorilla JM, Martínez-Ripoll M, García-Blanco S (1987) Trans Met Chem 12: 159–167

    Article  Google Scholar 

  58. Weakley TJR (1982) Polyhedron 1: 17–19

    Article  CAS  Google Scholar 

  59. Román P, Martínez-Ripoll M, Jaud J (1982) Z Kristallogr 158: 141–147

    Article  Google Scholar 

  60. McGuire NK, O'Keeffe M (1984) J Solid State Chem 54: 49–53

    Article  CAS  Google Scholar 

  61. Krebs B, Paulat-Böschen I (1982) Acta Crystallogr B 38: 1710–1718

    Article  Google Scholar 

  62. Fuchs J, Hartl H (1976) Angw Chem 88: 385–386; Angew Chem Int Ed Engl 15: 375

    Google Scholar 

  63. Pope MT (1991) Progr Inorg Chem 39: 181–257. (a) p 183

    Google Scholar 

  64. Tytko KH (1989) Reactions of Oxomolybdenum(VI) Species in Aqueous Solution, In: Gmelin Handbook of Inorganic Chemistry, 8th edn, Molybdenum Suppl Vol B 3b, pp 1–207. (a) pp 118–119

    Google Scholar 

  65. McCarley RE (1986) Polyhedron 5: 51–61

    Article  CAS  Google Scholar 

  66. Evans HT Jr, Gatehouse BM, Leverett P (1975), J Chem Soc Dalton Trans 505–514

    Google Scholar 

  67. Nishikawa T, Sasaki Y (1975) Chem Lett 1185–1186

    Google Scholar 

  68. Qin Chen, Shuncheng Liu, Zubieta J (1990) Inorg Chim Acta 175: 241–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Allen J. Bard Ian G. Dance Peter Day FRS James A. Ibers Toyohi Kunitake Thomas J. Meyer D. Michael P. Mingos Herbert W. Roesky Jean-Pierre Sauvage Arndt Simon Fred Wudl

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tytko, K.H., Mehmke, J., Kurad, D. (1999). Bond length-bond valence relationships with particular reference to polyoxometalate chemistry. In: Bard, A.J., et al. Bonding and Charge Distribution in Polyoxometalates: A Bond Valence Approach. Structure and Bonding, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103379

Download citation

  • DOI: https://doi.org/10.1007/BFb0103379

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64934-2

  • Online ISBN: 978-3-540-68306-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics