Skip to main content

Fluidized bed adsorption as a primary recovery step in protein purification

  • Chapter
  • First Online:
Book cover New Enzymes for Organic Synthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((4143,volume 58))

Abstract

Fluidized bed adsorption has been introduced as an integrative technology combining clarification, concentration, and initial purification in a single step. In the paper presented here, the use of fluidized adsorbents in the primary recovery of proteins starting from unclarified broths is reviewed. First the principle of fluidizing adsorbent, particles is discussed, subsequently possible experimental procedures for whole broth adsorption are demonstrated. The system parameters governing the performance of the sorption process in a fluidized bed are discussed in the second part of the paper and considerations on how operating parameters and process design influence the limiting steps are provided. Finally, examples for the successful operation of whole broth adsorption, employing fluidized adsorbents are shown and conditions are defined under which this technology may be an alternative to traditional protein purification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

α:

proportionality constant in Eq. (19)

ε:

interstitial volume

η:

dynamic viscosity [kg/(m·s)]

ρl :

liquid density [kg/m3]

ρp :

solids density [kg/m3]

μ1 :

first central moment of the residence time distribution

μ2 :

second central moment of the residence time distribution

Bo:

Bodenstein number U·L/D axl

Ga:

Gallileo number ρgg(ρpl)d 3p 2

Pep :

Particle Peclet number U e ·d p /D axl

Rep :

Particle Reynolds number U·dp·ρl

Remf :

Reynolds number at minimum fluidization velocity

Ret :

Reynolds number at terminal setting velocity

Sc:

Schmidt number η/(D·ρl

BSA:

bovine serum albumin

CIP:

cleaning in place

D:

diffusion coefficient in free solution [m2/s]

Daxl :

liquid phase dispersion coefficient [m2/s]

Daxp :

solid phase dispersion coefficient [m2/s]

De :

effective (pore) diffusion coefficient [m2/s]

dc :

column diameter [m]

dp :

particle diameter [m]

G6PDH:

glucose-6-phosphate dehydrogenase

HSA:

human serum albumin

IP:

isoelectric point

K:

equilibrium constant

kf :

film transport coefficient [m/s]

L:

fluidized bed height [m]

m:

proportionality constant in Eq. (19)

MA :

protein molecular weight [kDa]

MAb:

monoclonal antibody

MDH:

malate dehydrogenase

MSFB:

magnetically stabilized fluidized bed

Mv:

density ratio (ρpl)/ρl

n:

Richardson-Zaki coefficient

N L :

fluid side mass transport number

NP :

particle side mass transport number

Qdyn :

dynamic capacity [mg/mladsorbent]

Qmax :

equilibrium capacity [mg/mladsorbent]

rp :

particle radius [m]

SSRFB:

single stage recirculating fluidized bed

T:

absolute temperature [K]

U:

linear velocity [m/s]

Ue :

effective linear velocity (U/ε) [m/s]

Umf :

minimum fluidization velocity [m/s]

Ut :

terminal settling velocity [m/s]

References

  1. Wheelwright SM (1989) J. Biotechnol. 11: 89

    Article  CAS  Google Scholar 

  2. Datar RV, Cartwight T, Rosen C-G (1993) Bio/Technology 11: 349

    Article  CAS  Google Scholar 

  3. Spalding BJ (1991) Bio/Technology 9: 229

    Article  CAS  Google Scholar 

  4. Datar RV, Rosen C-G (1996) Cell and cell debris removal: centrifugation and crossflow filtration. In: Stephanopoulos G (ed) Bioprocessing. VCH, Weinheim, p 472

    Google Scholar 

  5. Kempken R, Preissmann A, Berthold W (1995) Biotechnol. Bioeng. 46: 132

    Article  CAS  Google Scholar 

  6. van Reis R, Leonard LC, Hsu CC, Builder SE (1991) Biotechnol. Bioeng. 38: 413

    Article  Google Scholar 

  7. Kroner KH, Schütte H, Hustedt H, Kula, MR (1984) Proc. Biochem. 19: 67

    CAS  Google Scholar 

  8. Albertsson P-A (1960) Partition of cell particles and macromolecules. Almqvist and Wiksell, Stockholm

    Google Scholar 

  9. Kula MR (1990) Bioseparation 1: 181

    CAS  Google Scholar 

  10. Kroner KH, Krause S, Deckwer WD (1992) BIO forum 12/92: 455

    Google Scholar 

  11. Chase HA (1994) TIBTECH 12: 296

    CAS  Google Scholar 

  12. Krützfeldt R, Roß A, Deckwer DW (1992) BioEngineering 4: 32

    Google Scholar 

  13. Roe SD (1987) Whole broth extraction of enzymes from fermentation broths using, commerically available adsorbents. In: Verall MS, Hudson MJ (ed) Separations for Biotechnology. Ellis Horwood, Chichester, p 210

    Google Scholar 

  14. Brummelhuis HGJ (1980) Preparation of the Prothrombin complex. In: Curling JM (ed) Methods of plasma protein fractionation. Academic Press, New York, p. 117

    Google Scholar 

  15. Nigam SC, Sakooda A, Wang HY (1988) Biotechnol. Progr. 4: 166

    CAS  Google Scholar 

  16. Grandics P (1994) Direct purification of monoclonal antibody from hybridoma cell culture harvest on packed bed columns using novel large bead agarose ion exchange, affinity, and immobilized affinity media. Proceedings of the IBC meeting on monoclonal antibody purification, San Francisco

    Google Scholar 

  17. di Felice R (1995) Chem. Eng. Sci. 50: 1213

    Article  Google Scholar 

  18. Richardson JF, Zaki WN (1954) Trans. I. Chem. E. 32: 35

    CAS  Google Scholar 

  19. Martin BLA, Kolar Z, Wesselingh JA (1981) Trans. I. Chem. E. 59: 100

    CAS  Google Scholar 

  20. Riba JP, Routie R, Couderc JP (1978) Can. J. Chem. Eng. 56: 26

    CAS  Google Scholar 

  21. Al-Dibouni MR, Garside J (1979) Trans. I. Chem. E. 57: 94

    CAS  Google Scholar 

  22. Couderc JP (1985) Incipient fluidization and particulate systems. In: Davidson JF, Clift R, Harrison D (ed) Fluidization. Academic Press, London, p 1

    Google Scholar 

  23. Bascoul A, Biscans B, Delmas H (1991) Rec. progr. gen. proc. 5: 275

    CAS  Google Scholar 

  24. Fauquex PF, Flaschel E, Renken A (1984) Chimia 38: 262

    CAS  Google Scholar 

  25. Bujis A, Wesslingh JA (1980) J. Chromatogr. 201: 319

    Article  Google Scholar 

  26. Burns MA, Graves DJ (1985) Biotechnol. Progr. 1: 95

    Article  CAS  Google Scholar 

  27. Draeger NM, Chase HA (1990) Modelling of protein adsorption in liquid fluidized beds. In: Pyle DL (ed) Separations for biotechnology 2. Elsevier, Dorking, p. 325

    Google Scholar 

  28. Draeger NM, Chase HA (1990) I. CHEM.E. Symposium Series 118: 161

    CAS  Google Scholar 

  29. Draeger NM, Chase HA (1991) Bioseparation 2: 67

    CAS  Google Scholar 

  30. Chase HA, Draeger NM (1992) J. Chromatogr. 597: 129

    Article  CAS  Google Scholar 

  31. Chase HA, Draeger NM (1992) Sep. Sci. Technol. 27: 2021

    CAS  Google Scholar 

  32. Dasari G, Prince I, Hearn MTW (1993) J. Chromatogr. 631: 115

    Article  CAS  Google Scholar 

  33. Thömmes J, Halfar M, Lenz S, Kula MR (1995) Biotechnol. Bioeng. 45: 203

    Article  Google Scholar 

  34. Beyzavi K (1994) Bioprocessing World 1: 5

    Google Scholar 

  35. Gilchrist GR, Burns MT, Lyddiatt A (1994) Solid phases for protein adsorption in liquid fluidized beds. In: Pyle DL (ed) Separations for biotechnology 3, The Royal, Society of Chemistry, London, p. 186

    Google Scholar 

  36. de Luca L, Hellenbroich D, Titchener-Hooker NJ, Chase HA (1994) Bioseparation 4: 311

    Google Scholar 

  37. Chang YK, Chase HA (1996) Biotechnol. Bioeng. 49: 512

    Article  CAS  Google Scholar 

  38. Chang YK, McCreath GE, Chase HA (1995) Biotechnol. Bioeng. 48: 355

    Article  CAS  Google Scholar 

  39. Thömmes J, Bader A, Halfar M, Karau A, Kula MR (1996) J. Chromatogr. A 752: 111

    Article  Google Scholar 

  40. Morris JE, Tolppi GC, Dunlap CJ, Carr PW, Flickinger MW (1994) Protein separation using HPLC and fluidized bed zirconia supports. Proceedings of the ACS Meeting, San Diego

    Google Scholar 

  41. McCreath GE, Chase HA, Lowe CR (1994) J. Chromatogr. A 659: 275

    Article  CAS  Google Scholar 

  42. McCreath GE, Chase HA, Owen RO, Lowe CR (1995) Biotechnol. Bioeng. 48: 341

    Article  CAS  Google Scholar 

  43. Chetty AS, Burns MA (1991) Biotechnol. Bioeng. 38: 963

    Article  CAS  Google Scholar 

  44. Chang YK, Chase HA (1996) Biotechnol. Bioeng. 49: 204

    Article  CAS  Google Scholar 

  45. Barnfield-Frej A-K, Hjorth R, Hammarstroem A (1994) Biotechnol. Bioeng. 44: 922

    Article  CAS  Google Scholar 

  46. Hanson M, Stahl S, Hjorth R, Uhlen M, Moks T (1994) Bio/Technology 12: 285

    Article  Google Scholar 

  47. Batt BC, Yabannavar VM, Singh V (1995) Bioseparation 5: 41

    CAS  Google Scholar 

  48. Spence C, Schaffer CA, Kessler S, Bailon P (1994) Biomed. Chromatogr. 8: 236

    Article  CAS  Google Scholar 

  49. Bascoul A, Delmas H, Couderc JP (1988) Chem. Eng. J. 37: 11

    Article  CAS  Google Scholar 

  50. Van der Meer AP, Blanchard CMRJP, Wesselingh JA (1984) Chem. Eng. Res. Des. 62: 214

    Google Scholar 

  51. Hjorth R, Kämpe S, Carlsson M (1995) Bioseparation 5: 217

    CAS  Google Scholar 

  52. Zurek H, Kubis E, Keup P, Hörlein D, Beunink J, Thömmes J, Kula MR, Hollenberg CP, Gellissen G (1996) Proc. Biochem. 31: 679

    Article  CAS  Google Scholar 

  53. Wells CM, Lyddiatt A, Patel K (1987) Liquid fluidized bed adsorption in biochemical recovery from biological suspensions. In: Verall MS, Hudson MJ (ed) Separations for biotechnology. Ellis Horwood, Chicester, p 217

    Google Scholar 

  54. Slater MJ (1992) Principles of ion exchange technology. Butterworth and Heinemann, Oxford

    Google Scholar 

  55. Levenspiel O (1972) Chemical Reaction Engineering. Wiley, New York

    Google Scholar 

  56. Goto M, Imamura T, Hirose T (1995) J. Chromatogr. A 690: 1

    Article  CAS  Google Scholar 

  57. Lindgren A, Johannson S, Nyström L-E (1993) Scale-up of expanded bed adsorption. In: Henon B (ed) BED—The seventh Bioprocess Engineering Symposium. The American Society of Mechanical Engineers, p 27

    Google Scholar 

  58. Fauquex PF, Flaschel E, Renken A, Do HP, Friedli C, Lerch P (1983) Int. J. Radiat. Isot. 34: 1465

    Article  CAS  Google Scholar 

  59. Thömmes J, Weiher M, Karau A, Kula MR (1995) Biotechnol. Bioeng. 48: 367

    Article  Google Scholar 

  60. Tang WT, Fan L-S (1990) Chem. Eng. Sci. 45: 543

    Article  CAS  Google Scholar 

  61. Carlos CR, Richardson JF (1968) Chem. Eng. Sci. 23: 825

    Article  CAS  Google Scholar 

  62. Bascoul A, Couderc JP, Delmas H (1993) Chem. Eng. J. 51: 135

    Article  CAS  Google Scholar 

  63. Kang Y, Nah JB, Min BT (1990) Chem. Eng. Comm. 97: 197

    CAS  Google Scholar 

  64. Yutani N, Ototake N, Too JR, Fan LT (1982) Chem. Eng. Sci. 37: 1079

    Article  CAS  Google Scholar 

  65. Polson A (1950) J. Phys. Colloid Chem. 54: 649

    Article  CAS  Google Scholar 

  66. Skidmore G, Horstmann BJ, Chase HA (1990) J. Chromatogr. 498: 113

    Article  CAS  Google Scholar 

  67. Janson JC, Peterson T (1993) Large scale chromatography of proteins. In: Ganetsos G, Barker PE (ed) Preparative and production scale chromatography. Marcel, Dekker, New York, p 559

    Google Scholar 

  68. Afeyan NB, Fulton SF, Mazsaroff I, Regnier FE (1990) Bio/Technology 8: 203

    Article  CAS  Google Scholar 

  69. Gustavsson P-E, Larsson P-O (1996) J. Chromatogr. A 734: 231

    Article  CAS  Google Scholar 

  70. Boschetti E, Guerrier L, Girot P, Horvath J (1995) J. Chromatogr. B 664: 225

    CAS  Google Scholar 

  71. Roper DK, Lightfoot EN (1995) J. Chromatogr. A 702: 3

    Article  CAS  Google Scholar 

  72. Thömmes J, Kula MR (1995) Biotechnol. Progr. 11: 357

    Article  Google Scholar 

  73. Hall KR, Eagelton LC, Acrivos A, Vermeulen T (1966) I&EC Fundamentals 5: 212

    Article  CAS  Google Scholar 

  74. Rowe PN (1975) Chem. Eng. Sci. 30: 7

    Article  CAS  Google Scholar 

  75. Fan LS, Yang YC, Wen CY (1960) AIChEJ 6: 482

    Article  CAS  Google Scholar 

  76. Veeraraghavan S, Fan LT (1989) Chem, Eng. Sci. 44: 2333

    Article  CAS  Google Scholar 

  77. Bartels CR, Kleimann G, Korzun JN, Irish DB (1958) Chem. Eng. Progr. 54: 49

    CAS  Google Scholar 

  78. Belter PA, Cunningham FL, Chen JW (1973) Biotechnol. Bioeng. 15: 533

    Article  CAS  Google Scholar 

  79. Gailliot FP, Gleason C, Wilson JJ, Zwarick J (1990) Biotechnol. Progr. 6: 370

    Article  CAS  Google Scholar 

  80. Morton PH, Lyddiatt A (1992) Direct recovery of protein products from whole fermentation broths: A role for ion exchange adsorption in fluidized beds. In: Slater MJ (ed) Ion exchange advances. Elsevier, London

    Google Scholar 

  81. Morton P, Lyddiatt A (1994) Direct integration of protein recovery with productive fermentations. In: Pyle DL (ed) Separations for biotechnology 3, The Royal Society of Chemistry, London, p 329

    Google Scholar 

  82. Thömmes J, Born C, Biselli M, Wandrey C, Kula MR (1995) Purification of monoclonal antibodies by fluidized bed adsorption. In: Beuvery CE, Griffiths JB, Zeijlmaker WP (ed) Animal cell technology: developments towards the 21st century. Kluwer, p 515

    Google Scholar 

  83. Born C, Thömmes J, Biselli M, Wandrey C, Kula M-R (1996) Bioproc. Eng. 15: 21

    CAS  Google Scholar 

  84. Erickson JC, Finch JD, Greene DC (1994) Direct capture of recombinant proteins from animal cell culture media using a fluidized bed adsorber. In: Griffiths B, Spier RE, Berthold W (ed) Animal cell technology: products for today, prospects for tomorrow. Butterworth and Heinemann, Oxford, p 557

    Google Scholar 

  85. Vouté N (1992) Fluidized beds with beaded supports for protein separation. Proceedings of the second international conference on separation of biopharmeuticals, France

    Google Scholar 

  86. Somers W, Van't Reit K, Rozie H, Rombouts FM, Visser J (1989) Chem. Eng. J. 40: B7

    Article  CAS  Google Scholar 

  87. Agosto M, Wang N-HL, Wankat PC (1993) Ind. Eng. Chem. Res. 32: 2058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Maria-Regina Kula on the occasion of her 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thömmes, J. (1997). Fluidized bed adsorption as a primary recovery step in protein purification. In: New Enzymes for Organic Synthesis. Advances in Biochemical Engineering/Biotechnology, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103305

Download citation

  • DOI: https://doi.org/10.1007/BFb0103305

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61869-0

  • Online ISBN: 978-3-540-70728-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics