On a class of models of the n-th order arithmetic

  • W. Marek
  • P. Zbierski
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 669)


Transitive Model Elementary Extension Memorial Logic Order Arithmetic Infinitary Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.Aczel: Infinitary Logic and Barwise compactness Theorem, Proceedings of Bertrand Russel Memorial Logic Conference, Leeds, 1973, pp. 234–277.Google Scholar
  2. [2]
    J.Barwise: Admissible Sets and Structures, Berlin-Heidelberg, 1976.Google Scholar
  3. [3]
    H.Friedman: Countable Models for Set Theories, Proceedings of Cambridge Conference of Logic, S.L.N. 337, 1973.Google Scholar
  4. [4]
    H.J. Keisler, M. Morley: Elementary Extensions of Models of Set Theory, Israel Journal of Math. 6, 1968, pp. 49–65.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.L.Krivine, K.Mc.Aloon: Some True Unprovable Formulas for Set Theory, Proceedings of Bertrand Russel Memorial Logic Conference, Leeds, 1973, pp. 332–341.Google Scholar
  6. [6]
    W. Marek, A. Mostowski: On Extendability of Models of ZF Set Theory to the Models of Kelley-Morse Theory of Classes, Proceedings of Kiel Conference of Logic, S.L.N. 499, 1975, pp. 460–543.MathSciNetzbMATHGoogle Scholar
  7. [7]
    W. Marek, M. Srebrny: Gaps in the Constructible Universe, Annals of Math. Logic, 6, 1974, pp. 359–394.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    W. Marek, M. Srebrny: No Least Transitive Model of Z-, Zeitschrift für Math. Logik und Grundlagen der Math., 21, 1975, pp. 225–228.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. Marek, P. Ziberski: On Higher Order Set Theories, Bull.Acad.Pol.Sci.Serie Math.Astron.Phys. XXI, 1973, pp. 97–101.MathSciNetGoogle Scholar
  10. [10]
    W.Marek, P.Zbierski: On Number of Extensions of Models, to appear.Google Scholar
  11. [11]
    A. Mostowski, Y. Suzuki: On ω — Models Which Are Not β — Models, Fund. Math. LXV, 1969, pp. 83–93.MathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Nadel: Some Skolem-Löwenheim Result for Admissible Sets, Israel Journ. of Math. 12, 1972, pp. 427–432.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Zbierski: Models for Higher Order Arithmetics, Bull.Acad. Pol.Sci.Ser.Math. Astron.Phys. XIX, 1971, pp. 557–562.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • W. Marek
    • 1
  • P. Zbierski
    • 1
  1. 1.Mathematics InstituteUniversity of WarsawPoland

Personalised recommendations