Some results on degrees of constructibility

  • Petr Hájek
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 669)


Natural Number Initial Segment Sequential Tree Finite Lattice Complete Boolean Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ź. Adamowicz: On finite lattices of degrees of constructibility of reals, Journ. Symb. Log. 41 (1976), 313–322MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    B.Balcar and P.Hájek: On sequences of degrees of constructibility, Zeitschr. Math. Log. (to appear)Google Scholar
  3. [3]
    W. Boos: Lectures on large cardinals axioms, in: Logic Conference Kiel 1974 (G.H. Müller, A. Oberschelp and K. Potthof, eds.) Lect. Notes in Math. 499, Springer-Verlag 1975, p.25–88Google Scholar
  4. [4]
    H. Friedman: Minimality in the Δ21 degrees, Fund. Math. 81 (1974), 183–192MathSciNetzbMATHGoogle Scholar
  5. [5]
    L.Harrington and A.Kechris: π21 singletons and O# Fund. Math. (to appear)Google Scholar
  6. [6]
    T.J.Jech: Lectures in Set Theory, Lecture Notes in Math. 217, Springer-Verlag 1971Google Scholar
  7. [7]
    T.J. Jech: Trees, Journ. Symb. Log. 36 (1971), 1–14MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T.J.Jech: a prepared monograph on set theoryGoogle Scholar
  9. [9]
    R.Jensen: Definable sets of minimal degree, in: Mathematical Logic and Foundations of Set Theory (Y.Bar-Hillel, ed.), North-Holland P.C. 1970, p.122–128Google Scholar
  10. [10]
    R. Jensen and H. Johnsbraten: A new construction of a non-constructible Δ31 subset of ω, Fund. Math. 81 (1974), 279–290MathSciNetzbMATHGoogle Scholar
  11. [11]
    A.H. Lachlan and R. Lebeuf: Countable initial segments of the degrees of unsolvability, Journ. Symb. Log. 41 (1976), 289–300MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G.E.Sacks: Degrees of Unsolvability, Princeton Univ. Press 1963Google Scholar
  13. [13]
    J.R.Shoenfield: Degrees of Unsolvability, North-Holland P.C.1971Google Scholar
  14. [14]
    J.R.Shoenfield: Mathematical Logic, Addison-Wesley 1967Google Scholar
  15. [15]
    R. Solovay: A non-constructible Δ31 set of integers, Trans. Amer. Math. Soc. 127 (1967) 50–75MathSciNetzbMATHGoogle Scholar
  16. [16]
    R. Solovay: A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970) 1–56MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. Solovay and S. Tennenbaum: Iterated Cohen extensions and Souslin's problem, Ann. of Math. 94 (1971) 201–245MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Petr Hájek
    • 1
  1. 1.Math. Inst., ČSAVPrague

Personalised recommendations