Hierarchies of sets definably by means of infinitary languages

  • Klaus Gloede
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 669)


Free Variable Order Variable Regular Cardinal Class Term Transitive Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BARWISE, J. 1969 Infinitary logic and admissible sets, Journ. Symb. Logic 34 (1969), 226–252MathSciNetCrossRefzbMATHGoogle Scholar
  2. BARWISE, J.; GANDY, R.O. and MOSCHOWAKIS, Y.N. 1971 The next admissible set, Journ. Symb. Logic 36 (1971), 108–120MathSciNetCrossRefzbMATHGoogle Scholar
  3. CHANG, C.C. 1967 Sets constructible using Lkk, In: Axiomatic Set Theory, Proc. Symp. in Pure Mathematics 13, 1–8, Providence, Rh.I. (1971)Google Scholar
  4. DICKMANN, M.A. 1975 Large Infinitary Languages, North-Holland Publ. Co., Amsterdam (1975)zbMATHGoogle Scholar
  5. GLOEDE, K. 1974 Mengenlehre in infinitären Sprachen, Habilitationsschrift Univ. Heidelberg (1974)Google Scholar
  6. 1975 Set theory in infinitary languages, Logic Conference Kiel 1974, Lecture Notes in Mathematics 499, 311–362, Springer-Verlag, Berlin-Heidelberg-New York (1975)Google Scholar
  7. 1977 The metamathematics of infinitary set theoretical systems, Zeitschrift f. mathem. Logik und Grundlagen d. Mathem. 23, 19–44 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. GÖDEL, K. 1940 The consistency of the axiom of choice and the generalized continuum hypothesis, Annals of Math. Studies 3, Princeton, N.J. (1940)Google Scholar
  9. KARP, C. 1964 Languages with expressions of infinite length, North-Holland Publ. Co., Amsterdam (1964)zbMATHGoogle Scholar
  10. KUNEN, K. 1971 A model for the negation of the axiom of choice, Cambridge Summer School in Mathematical Logic 1971, Lecture Notes in Mathematics 337, 489–494, Springer-Verlag, Berlin-Heidelberg-New York (1973)CrossRefGoogle Scholar
  11. LEVY, A. 1964 Definability in axiomatic set theory I, Logic, Methodology and Philosophy of Science, 127–151, North-Holland Publ. Co., Amsterdam (1965)Google Scholar
  12. MYHILL, J. and SCOTT, D. 1967 Ordinal definability, In: Axiomatic Set Theory, Proc. of Symp. in Pure Mathematics 13, 271–278, Providence, R.I. (1971)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Klaus Gloede
    • 1
  1. 1.Mathematisches Institut der Universität HeidelbergHeidelberg

Personalised recommendations