Skip to main content

In vivo stationary flux analysis by 13C labeling experiments

  • Chapter
  • First Online:
Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 54))

Abstract

Stationary flux analysis is an invaluable tool for metabolic engineering. In the last years the metabolite balancing technique has become well established in the bioengineering community. On the other hand metabolic tracer experiments using 13C isotopes have long been used for intracellular flux determination. Only recently have both techniques been fully combined to form a considerably more powerful flux analysis method. This paper concentrates on modeling and data analysis for the evaluation of such stationary 13C labeling experiments. After reviewing recent experimental developments, the basic equations for modeling carbon labeling in metabolic systems, i.e. metabolite, carbon label and isotopomer balances, are introduced and discussed in some detail. Then the basics of flux estimation from measured extracellular fluxes combined with carbon labeling data are presented and, finally, this method is illustrated by using an example from C. glutamicum. The main emphasis is on the investigation of the extra information that can be obtained with tracer experiments compared with the metabolite balancing technique alone. As a principal result it is shown that the combined flux analysis method can dispense with some rather doubtful assumptions on energy balancing and that the forward and backward flux rates of bidirectional reaction steps can be simultaneously determined in certain situations. Finally, it is demonstrated that the variant of fractional isotopomer measurement is even more powerful than fractional labeling measurement but requires much higher numerical effort to solve the balance equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A, B, C, D, E, S, P, …:

metabolite names

A, B, C, D, E, S, P, …:

absolute molar pool size of metabolites

b1, b2:

positional fractional carbon labeling of metabolite B with 2 carbon atoms

b00, b01, b10, b11:

isotopomer fractions of metabolite B with 2 carbon atoms

\(v_1^ \to ,v_1^ \leftarrow ,v_2^ \to ,v_2^ \leftarrow \) :

forward and backward fluxes corresponding to biochemical reaction steps

x, xinp:

vectors of all fractional carbon labels in a metabolic network and all input labels from substrates fed into the system

X:

vector of all absolute pool sizes in a metabolic network

v, v:

vectors of all forward and backward fluxes corresponding to metabolic reaction steps

v:

overall flux vector comprising v and v

vnet, vxch:

vectors of all net and exchange fluxes corresponding to metabolic reaction steps

N:

stoichiometric matrix

Ncnstr, ccnstr:

linear constraint matrix and constraint value vector

Pi, P inpi :

carbon atom transition matrices corresponding to reaction step i

Q i :

bimolecular isotopomer transition tensor corresponding to reaction step i

I:

pool size to fractional labeling state mapping matrix

w, y, Y:

measured fluxes, labels and pool sizes

Mw, My, My :

measurement matrices for fluxes, labels and pool sizes

ɛ w , ɛ y , ɛ Y :

measurement noise vectors for fluxes, labels and pool sizes

References

  1. Bailey JE (1991) Science 252: 1668

    CAS  Google Scholar 

  2. Stephanopoulos G, Sinskey AJ (1993) TibTech 11: 392

    CAS  Google Scholar 

  3. Kacser H, Acerenza L (1993), Eur J Biochem, 216: 361

    CAS  Google Scholar 

  4. Vallino JJ, Stephanopoulos G (1993) Biotech Bioeng 41: 633

    CAS  Google Scholar 

  5. Jorgensen H (1995) Biotech Bioeng 46: 117

    CAS  Google Scholar 

  6. Sonntag K, Schwinde J, de Graaf AA, Marx A, Eikmanns BJ, Wiechert W, Sahm H (1995) Appl Microbiol Biotech (In Press)

    Google Scholar 

  7. Kacser H (1988) in: Bazin MJ, Prosser JI (ed) Physiological Models in Microbiology, vol 2, CRC Press, p 1

    Google Scholar 

  8. Kell DB, Westerhoff HV (1986) FEMS Microbiol Rev 39: 305

    CAS  Google Scholar 

  9. Albe KR, Wright BE (1992) J Biol Chem 267: 3106

    CAS  Google Scholar 

  10. Goel A, Ferrance J, Jeong J, Ataai MM (1993) Biotech Bioeng 42: 686

    Google Scholar 

  11. van Heijden RTJM, Heijnen JJ, Hellinga C, Romein B, Luyben KCAM (1994) Biotech Bioeng 43: 3

    Google Scholar 

  12. Walker TE, Han CH, Kollman VH, London RE, Matwiyoff NA (1982) J Biol Chem 257: 1189

    CAS  Google Scholar 

  13. Chance EM, Seeholzer SH, Kobayashi K, Williamson JR (1983) J Biol Chem 258: 13785

    CAS  Google Scholar 

  14. Walsh K, Koshland DE (1984) J Biol Chem 259: 9646

    CAS  Google Scholar 

  15. Malloy CR, Sherry AD, Jeffrey FMH (1988) J Biol Chem 263: 6964

    CAS  Google Scholar 

  16. Sharfstein ST, Tucker SN, Mancuso A, Blanch HW, Clark DS (1994) Biotech Bioeng 43: 1059

    CAS  Google Scholar 

  17. Zupke C, Stephanopoulos G (1995) Biotech Bioeng 45: 292

    CAS  Google Scholar 

  18. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1995) Biotech Bioeng (In press)

    Google Scholar 

  19. Hofmeyr JHS (1986) Comp Appl Biosc 2: 5

    CAS  Google Scholar 

  20. Varma A, Palsson BO (1994) Bio/Technol 12: 994

    CAS  Google Scholar 

  21. Gadian DG (1982) Nuclear Magnetic Resonance and its Application to Living Systems. Oxford University Press, Oxford

    Google Scholar 

  22. Matwiyoff NA (1982) in. [23] Stable Isotopes, Elservier (Analytical Chemistry Symposia Series, vol 11) p 573

    Google Scholar 

  23. Schmidt H-L, Förstel H, Heinzinger K (ed) (1982) Stable Isotopes, Elsevier (Analytical Chemistry Symposia Series, vol 11)

    Google Scholar 

  24. London RE (1988) Progr NMR Spectr 20: 337

    CAS  Google Scholar 

  25. Lundberg P, Harmsen E, Ho C, Vogel HJ (1990) Anal Biochem 191: 193

    CAS  Google Scholar 

  26. Weuster D, de Graaf AA (1995) Adv Biochem Eng Biotech This volume

    Google Scholar 

  27. Eggeling L, de Graaf AA (1995) Adv Biochem Eng Biotech This volume

    Google Scholar 

  28. Schügerl K (ed) (1991) Measuring, Modelling and Control Verlag Chemie, Weinheim (Biotechnology, vol 4)

    Google Scholar 

  29. Kanamori K, Weiss RL, Roberts D (1988) J Biol Chem 263: 2871

    Google Scholar 

  30. Roberts MF, Choi B-S, Robertson DE, Lesage S (1990) J Biol Chem 265: 18207

    CAS  Google Scholar 

  31. London RE (1992) in: Berliner LJ, Reuben J (ed) Biological Magnetic Resonance, vol 11, Plenum Press, p 277

    Google Scholar 

  32. Malaisse WJ, Biesemans M, Willem R (1994) Mol Cell Biochem 130: 129

    CAS  Google Scholar 

  33. Ross BD, Kingsley PB, Ben-Yoseph O (1994) Biochem J 302: 31

    CAS  Google Scholar 

  34. Stein RB, Blum JJ (1979) J Biol Chem 254: 10385

    CAS  Google Scholar 

  35. Rabkin M, Blum JJ (1985) Biochem J 225: 761

    CAS  Google Scholar 

  36. Crawford JM, Blum JJ (1983) Biochem J 212: 595

    Google Scholar 

  37. Sonntag K, Eggeling L, de Graaf AA, Sahm H (1993) Eur J Biochem 213: 1325

    CAS  Google Scholar 

  38. Jans AWH, Winkel C, Buitenhuis L, Lugtenburg J (1989) Biochem J 257: 425

    CAS  Google Scholar 

  39. Kelly P, Kelleher JK, Wright BE (1979), Biochem J 184: 581

    CAS  Google Scholar 

  40. Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1990) J Cerebr Blood flow Metab 10: 170

    CAS  Google Scholar 

  41. Weiss RG, Gloth ST, Kalil-Filho R, Chacko VP, Stern MD, Gerstenblith G (1992) Circ Res 70: 392

    CAS  Google Scholar 

  42. Chatham JC, Forder JR, Glickson JD, Chance EM (1995) J Biol Chem 270: 7999

    CAS  Google Scholar 

  43. Katz J, Wals P, Lee W-NP (1993) J Biol Chem 268: 25509

    CAS  Google Scholar 

  44. Künnecke B, Cerdan, S, Seelig J (1993) NMR in Biomed 6: 264

    Google Scholar 

  45. Di Donato L, Les Rosiers C, Montgomery JA, David F, Garneau M, Brunengraber H (1993) J Biol Chem 268: 4170

    Google Scholar 

  46. Wolfsberg M (1992) in: [23] Stable Isotopes, Elsevier (Analytical Chemistry Symposia Series, vol 11) p 3

    Google Scholar 

  47. O'Leary MH (1982) in: [23] Stable Isotopes, Elsevier (Analytical Chemistry Symposia Series, vol 11) p 67

    Google Scholar 

  48. Winkler FJ, Kexel H, Kranz C, Schmidt H-L (1982) in: [23] Stable Isotopes, Elsevier (Analytical Chemistry Symposia Series, vol 11) p 83

    Google Scholar 

  49. Okuno K (1994), J Ferment Bioeng 77: 453

    Google Scholar 

  50. Marx A (1994) Charakterisierung des Zentralstoffwechsels bei Corynebacterium glutamicum mittels Metabolitbilanzierung und computergestützter Analyse von 13C-NMR-Markierungsdaten Diploma Thesis, Universität Bonn

    Google Scholar 

  51. Jeffrey FMH, Rajagopal A, Malloy CR, Sherry AD (1991) TIBS 16: 5

    CAS  Google Scholar 

  52. Cohen SM, Rognstad R, Shulman RG, Katz J (1981) J Biol Chem 256: 3428

    CAS  Google Scholar 

  53. Inbar L, Lapidot A (1987) Eur J Biochem 162: 621

    CAS  Google Scholar 

  54. Schrumpf B, Schwarzer A, Kalinkowski J, Pühler A, Eggeling L, Sahm H (1991) J Bacteriol 173: 4510

    CAS  Google Scholar 

  55. Lee W-NP (1993) J Biol Chem 268: 25522

    CAS  Google Scholar 

  56. Domach MM, Leung SK, Cahn RE, Cocks CG, Shuler ML (1984) Biotech Bioeng 26 203

    CAS  Google Scholar 

  57. Wright BE, Butler MH, Albe KR (1992) J Biol Chem 267: 3101

    CAS  Google Scholar 

  58. Stephanopoulos G, Vallino JJ Science 252: 1675

    Google Scholar 

  59. Wiechert W, de Graaf AA, Marx A (1995) in: [60] 3rd IFAC Symposium on Modelling and Control of Biotechnical Processes. Pergamon Press

    Google Scholar 

  60. Schuegerl K, Munack A (ed) (1995) 3rd IFAC Symposium on Modelling and Control of Biotechnical Processes. Pergamon Press

    Google Scholar 

  61. Segel IH (1975) Enzyme Kinetics. Wiley, New York

    Google Scholar 

  62. McIntyre LM, Thorburn DR, Bubb WA, Kuchel PW (1989) Eur J Biochem 180: 399

    CAS  Google Scholar 

  63. Varma A, Palsson BO (1994) Appl Env Microbiol 60: 3724

    CAS  Google Scholar 

  64. Holms WH (1986) Curr Topics Cell Regul 28: 69

    CAS  Google Scholar 

  65. Vallino JJ (1991) Identification of Branch-Point Restrictions in Microbial Metabolism through Metabolic Flux Analysis and local Network Perturbations. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  66. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the Bacterial Cell Sinauer Associates, Sunderland

    Google Scholar 

  67. Roels JA (1983) Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  68. Barrett GC, Davies JS (1985) in: Barrett GC, Davies JS (ed) Chemistry and Biochemistry of the Amino Acids Chapman and Hall, London, p 525

    Google Scholar 

  69. Jones JG, Sherry AD, Jeffrey FMH, Storey CJ, Malloy CR (1993) Biochemistry 32: 12240

    CAS  Google Scholar 

  70. den Hollander JA, Ugurbil K, Brown TR, Bednar M, Redfield C, Shulman RG (1986) Biochemistry 25: 203

    Google Scholar 

  71. de Graaf AA, Wittig RM, Probst U, Strohhäcker J, Schoberth SM, Sahm H (1992) J Magn Res 98: 654

    Google Scholar 

  72. Hartbrich A (1995) verfahrenstechnische Charakterisierung von Zyklonreaktoren in der Biotechnologie. PhD thesis, RWTH Aachen

    Google Scholar 

  73. Vanni Shanks J, Bailey E (1988) Biotech Bioeng 32: 1138

    Google Scholar 

  74. Dori, Arato, Maga (1988) Ann di Chim 78: 529

    Google Scholar 

  75. Ni F, Scheraga HA (1989) J Magn Res 82: 413

    CAS  Google Scholar 

  76. Massiot D, Thiele H, Germanus A (1994) Bruker Report 2: 43

    Google Scholar 

  77. Wittig R, Möllney M, Wiechert W, de Graaf AA (1995) in: [60] 3rd IFAC Symposium on Modelling and Control of Biotechnical Processes. Pergamon Press

    Google Scholar 

  78. Ekiel I, Smith ICP, Sprott GD (1983) J Bacteriol 156: 316

    CAS  Google Scholar 

  79. Eisenreich W, Strauss G, Werz U, Fuchs G, Bacher A (1993) Eur J Biochem 215: 619

    CAS  Google Scholar 

  80. Strauss G, Eisenreich W, Bacher A, Fuchs G (1992) Eur J Biochem 205: 853

    CAS  Google Scholar 

  81. Pickett MW, Williamson MP, Kelly DJ (1994) Photosynth Res 41: 75

    CAS  Google Scholar 

  82. Blum JJ, Stein RB (1982) in: Goldberger RF (ed) Biological Regulation and Development volume 3A. Plenum Press, p 99

    Google Scholar 

  83. Anderson DH (1983) Compartmental Modelling and Tracer Kinetics. Springer, New York

    Google Scholar 

  84. Lambrecht RM, Rescigno A (1983) Tracer Kinetics and Physiological Modelling, Springer, New York

    Google Scholar 

  85. Kuchel PW, Chapman BE (1983) J Theor Biol 105: 569

    CAS  Google Scholar 

  86. Schuster R, Schuster S, Holzhütter H-G (1992) J Chem Soc Faraday Trans 88: 2837

    CAS  Google Scholar 

  87. Wiechert W (1995) Metabolische Kohlenstoff-Markierungssysteme-Modellierung, Simulation, Analyse, Datenauswertung. Habilitationsschrift, Universität Bonn

    Google Scholar 

  88. Reder C (1988) J Theor Biol 135: 175

    CAS  Google Scholar 

  89. Wiechert W (1995) in: Dolezal (ed) IFIP TC7 Conf on System Modelling and Optimization. Chapman and Hall, In press

    Google Scholar 

  90. Holzhütter HG, Schwendel A (1993) in:[91]

    Google Scholar 

  91. Schuster S, Rigoulet M, Ouhabi R, Mazat J-P (ed) (1993) Modern Trends in Biothermokinetics 2, Sept. 23–26, Bordeaux, France Plenum Press

    Google Scholar 

  92. Zupke C, Stephanopoulos G (1994) Biotechnol Prog 10: 489

    CAS  Google Scholar 

  93. Wiechert W, de Graaf AA (1993) in: Bales V (ed) Modelling for improved Bioreactor Performance, Malé Centrum, Publisher & Bookshop, Bratislava

    Google Scholar 

  94. Westerhoff HV, van Dam K (1987) Mosaic Nonequilibrium Thermodynamics and Control of Biological Free-Energy Transduction Elsevier, Amsterdam

    Google Scholar 

  95. Chambost J-P, Fraenkel DG (1980) J Biol Chem 255: 2867

    CAS  Google Scholar 

  96. den Hollander JA, Behar KL, Shulman RG (1981) Proc Natl Acad Sci 78: 2693

    Google Scholar 

  97. Patnaik R (1992) J Bacteriol 174: 7527

    CAS  Google Scholar 

  98. Chato Y-P, Liao JC (1994) J Biol Chem 269: 5122

    Google Scholar 

  99. Chauvin M-F, Megnin-Chanet F, Martin G, Lhoste J-M, Baverel G (1994) J Biol Chem 269: 2605

    Google Scholar 

  100. Mavrovouniotis ML (1993) in: [101] Proc ISMB-93. AAAI Press p 275

    Google Scholar 

  101. Hunter L, Searls D, Shavlik J (ed) (1993) Proc ISMB-93. AAAI Press

    Google Scholar 

  102. Wiechert W (1994) in: Haubensack F, Sühnel J (ed) Bioinformatik, Jena Internet address: ftp.imb-jena.de

    Google Scholar 

  103. Fernandez CA, Des Rosiers C (1995) J Biol Chem 270: 10037

    CAS  Google Scholar 

  104. Schwingenheuer V (1996) Redundanzanalyse bei metabolischen 13C Markierungssystemen. Diploma Thesis, Universität Bonn

    Google Scholar 

  105. Holzhütter H-G, Schwendel A, Grune T, Quedenau J, Siems W (1993) Comp Appl Biosc 9: 573

    Google Scholar 

  106. Mavrovouniotis ML, Stephanopoulos G, Stephanopulos G (1990) Biotech Bioeng 36: 1119

    CAS  Google Scholar 

  107. Hofestädt R (1993) in: [101] Proc ISMB-93. AAAI Press p 181

    Google Scholar 

  108. Wiechert W (1994) in: Gnaiger E, Gellerich FN, Wyss M (ed) What is Controlling Life? Innsbruck University Press (Modern Trends in BioThermoKinetics, vol 3)

    Google Scholar 

  109. Hairer E, Norsett SP, Wanner G (1987) Solving Ordinary Differential Equations I. Springer, New York

    Google Scholar 

  110. Hairer E, Wanner G (1991) Solving Ordinary Differential Equations II. Springer, New York

    Google Scholar 

  111. Cohen M, Bergman RN (1995) Am J Physiol 268: E397

    CAS  Google Scholar 

  112. Marinov CH, Neittanmäki P (1991) Mathematical Models in Circuit Theory. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  113. Bray D, Lay S (1994) Comp Appl Biosc 10: 471

    CAS  Google Scholar 

  114. Deuflhard P (1995) Newton Methods for Highly Nonlinear Problems. Academic Press, Oxford

    Google Scholar 

  115. Hackbusch W (1993) Iterative Lösung großer schwachbesetzter Gleichungssysteme. Teubner Verlag, Stuttgart

    Google Scholar 

  116. Siefke C (1996) Flußschätzung bei metabolischen 13C-Markierungsexperimenten Diploma Thesis, Universität Bonn

    Google Scholar 

  117. Seber GAF, Wild CJ (1989) Nonlinear Regression. Wiley, New York

    Google Scholar 

  118. Arnold SF (1990) Mathematical Statistics. Prentice Hall

    Google Scholar 

  119. Press WH, Flannery BP, Teukolsky, SA, Vetterling WT (1988) Numerical Recipes in C. Cambridge University Press, Cambridge

    Google Scholar 

  120. Tran-Dinh S, Herve M, Wietzerbin J (1991) Eur J Biochem 201: 715

    CAS  Google Scholar 

  121. Des Rosiers C, Di Donatos, L, Comte B, Laplante A, Marcoux C, David F, Fernandez CA, Brunengraber H (1995) J Biol Chem 270: 10027

    Google Scholar 

  122. van Heijden RTJM, Romein B, Heijnen JJ, Hellinga C, Luyben KCAM (1994) Biotech Bioeng 43: 11

    Google Scholar 

  123. Wiechert W (1995) In: Schomburg (ed) Bioinformatics: From Nucleic Acids to Cell Metabolism. Verlag Chemie, Weinheim (1995)

    Google Scholar 

  124. Bates DM, Watts DG (1988) Nonlinear Regression Analysis and its Applications. Wiley, New York

    Google Scholar 

  125. Pázman A (1993) Nonlinear Statistical Models. Kluwer Academic Publishing

    Google Scholar 

  126. Walter E (ed) (1987) Identifiability of Parametric Models Pergamon

    Google Scholar 

  127. Delforge J, d'Angio L, Audoly S (1987) in; [126] Identifiability of Parametric Models, Pergamon, p 21

    Google Scholar 

  128. Cohen SM (1983) J Biol Chem 258: 14294

    CAS  Google Scholar 

  129. Martin G, Chauvin M-F, Dugelay S, Baverel G (1994) J Biol Chem 269: 26034

    CAS  Google Scholar 

  130. Portais J-C, Schuster R, Merle M, Canioni P (1993) Eur J Biochem 217: 457

    CAS  Google Scholar 

  131. Kincaid DT, Pilette R (1992) Comp Appl Biosc 8: 267

    CAS  Google Scholar 

  132. Meszéna G (1993) In:[91]

    Google Scholar 

  133. Reddy VN, Mavrovouniotis ML, Liebman MN in: [101] Proc ISMB-93. AAAI Press p 328

    Google Scholar 

  134. Gielen G, Sansen W (1991) Symbolic Analysis for Automated Design of Analog Integrated circuits. Kluwer Academic Publishers

    Google Scholar 

  135. Cox D, Little J, O'Shea D (1992) Ideals, Varieties and Algorithms. Springer, New York

    Google Scholar 

  136. Becker T, Wiespfennig V (1993) Gröbner Bases. Springer, New York

    Google Scholar 

  137. Lecourtier Y, Raksanyi A (1987) in: [126] Identifiability of Parametric Models, Pergamon p 75

    Google Scholar 

  138. Melenk H, Möller HM, Neun W (1989) Imp Comput Sci Eng 1

    Google Scholar 

  139. Posten C, Tibken B (1995) Control Eng Pract 3

    Google Scholar 

  140. Tosaka O, Morioka H, Takinami K (1979) Agric Biol Chem 43: 1513

    CAS  Google Scholar 

  141. Flanigan I, Collins JG, Arora KK, MacLeod JK, Williams JF (1993) Eur J Biochem 213: 477

    CAS  Google Scholar 

  142. Wiechert W (1995) Comp Appl Biosc 11: 517

    CAS  Google Scholar 

  143. Mathews CK (1993) J Bacteriol 175: 6377

    CAS  Google Scholar 

  144. Sumegi B, Sherry AD, Malloy CR, Srere PA (1993) Biochem 32: 12725

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Sahm (Volume Editor)C. Wandrey (Volume Editor)

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiechert, W., de Graaf, A.A. (1996). In vivo stationary flux analysis by 13C labeling experiments. In: Sahm, H., Wandrey, C. (eds) Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102334

Download citation

  • DOI: https://doi.org/10.1007/BFb0102334

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60669-7

  • Online ISBN: 978-3-540-48526-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics