Skip to main content

Developments in mcirobial leaching—mechanisms of manganese solubilization

  • Chapter
  • First Online:
Microbial and Eznymatic Bioproducts

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 52))

Abstract

Microorganisms can be used to solubilize managenese in manganiferous oxide ores. The organisms usually use manganese as a terminal electron acceptor reducing it to Mn(II). Manganese-reducing organisms have been isolated from freshwater and ocean sediments, marine nodules, and ore samples. These organisms require, an organic source of carbon which can be provided in the form of molasses or other food industry waste products. The manganese-reducing bacteria and fungi can be used to extract manganese from low-grade, manganiferous ore, to separate manganese from iron in ferromanganiferous ore, and to release silver from refractory manganese oxide ores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones TS (1985). In: Mineral facts and problems, Bureau of Mines Bulletin 675, US Department of the Interior, Washington DC, p 483

    Google Scholar 

  2. Ehrlich HL (1988). In: Proceedings of the 8th International Biotechnology Symposium, vol 2, Paris, p 1094

    Google Scholar 

  3. Koutz FR (1984) The Hardshell silver, base-metal, managanese, oxide deposit, Patagonia mountains, Santa Cruz County, Arizona: a field trip guide. The Arizona Geological Society Digest, vol 15, p 199

    Google Scholar 

  4. Ehrlich HL (1973). In: Phase I Report, inter-university program of research on ferromanganese deposits on the ocean floor. Seabed assessment program, international decade of ocean exploration. National Science Foundation, Washington DC, p 217

    Google Scholar 

  5. Ehrlich HL (1963) Appl Microbiol 2: 15

    Google Scholar 

  6. Burdige DJ, Nealson KH (1985) Appl Environ Microbiol 50: 491

    CAS  Google Scholar 

  7. Lovley DR, Phillips EJP (1988) Appl Environ Microbiol 54: 1472

    CAS  Google Scholar 

  8. Myers CR, Nealson KH (1988) Science 240: 1319

    Article  CAS  Google Scholar 

  9. Di-Ruggiero J, Gounot AM (1990) Microb Ecol 20: 53

    CAS  Google Scholar 

  10. Gupta A, Ehrlich HL (1989) J Biotechnol 9: 287

    Article  CAS  Google Scholar 

  11. Rusin PA, Quintana L, Sinclair NA, Arnold RG, Oden KL (1991) Geomicrobiol J 9: 13

    CAS  Google Scholar 

  12. Madgwick JC (1993). In: Torma AE, Wey JE, Lakshmanan VL (eds) Biohydrometallurgical technologies. The minerals, Metals & Materials Society, vol 1, p 343

    Google Scholar 

  13. Rusin P. Cassells J, Sharp J, Arnold R, Sinclair NA (1992) Minerals Eng 5: 1345

    Article  CAS  Google Scholar 

  14. Ehrlich HL (1966) Dev Ind Microbiol 7: 279

    Google Scholar 

  15. Myers CR, Nealson KH (1988) Geochim Cosmochim Acta 52: 2727

    Article  CAS  Google Scholar 

  16. Paik G (1980). In: Lennette EH (ed-in-chief) Manual of clinical microbiology 3rd edn. American society for Microbiology, Washington, DC, p 1016

    Google Scholar 

  17. American Public Health Association (1989) Clerceri LS, Greenberg AE, Trussell RR (eds) Standard Methods for the Examination of Water and Wastewater. 17th ed. p 9–35

    Google Scholar 

  18. Wahab AAM (1975) Plant Soil 42: 703

    Article  Google Scholar 

  19. Rusin PA, Sharp JE, Arnold RG, Sinclair NA (1991). In: Smith RW, Mishra M (eds) Mineral bioprocessing. The Minerals, Metals, and Materials Society, New York, p 207

    Google Scholar 

  20. Arnold RG, DiChristina TJ, Hoffman MR (1986) Appl Environ Microbiol 52: 281

    CAS  Google Scholar 

  21. Arnold RG, Hoffmann MR, DiChristina TJ, Picardel FW (1990) Appl Environ Microbiol 56: 2811

    CAS  Google Scholar 

  22. Ehrlich HL (1993) J Ind Microbiol 12: 121

    Article  CAS  Google Scholar 

  23. Ehrlich HL (1987) Geomicrobiol J 5: 423

    CAS  Google Scholar 

  24. Merez TI, Madgwick JC (1982) Proc Aust Inst Min Metall 283: 43

    Google Scholar 

  25. Agate AD, Deshapande HA (1977). In: Schwartz W (ed) Conference-Bacterial Leaching, Verlag Chemie, Weinheim, p 241

    Google Scholar 

  26. Babenko YS, Dolgikh LM, Serebryanaya MZ (1983) Mikrobiologiya 52: 674

    Google Scholar 

  27. Groudev SN (1987) Acta Biotechnol 4: 299

    Article  Google Scholar 

  28. Ehrlich HL (1980). In: Biogeochemistry of ancient and modern environments, Springer-Verlag, Berlin

    Google Scholar 

  29. Ghiorse WC, Ehrlich HL (1976) Appl Environ Microbiol 31: 977

    CAS  Google Scholar 

  30. Francis AJ, Dodge CJ (1988) Appl Environ Microbiol 54: 1009

    CAS  Google Scholar 

  31. DeVrind JPM, Boogerd FC, DeVrind-DeJong EW (1986) J Bacteriol 167: 30

    CAS  Google Scholar 

  32. Myers CR, Myers JM (1992) J Bacteriol 174: 3429

    CAS  Google Scholar 

  33. Bennett JC, Tributsch H (1978) J Bacteriol 134: 310

    CAS  Google Scholar 

  34. Rodriquez-Leiva M, Tributsch H (1988) Arch Microbiol 149: 401

    Article  Google Scholar 

  35. Tributsch H (1976) Naturwissenschaften 63: 88

    Article  CAS  Google Scholar 

  36. Tributsch H, Bennett JC (1981) J Chem Tech Biotechnol 31: 565

    Article  CAS  Google Scholar 

  37. Tributsch H, Bennett JC (1981) J Chem Tech Biotechnol 31: 627

    Article  CAS  Google Scholar 

  38. Ehrlich HL (1993). In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. The Minerals, Metals & Materials Society, vol 2, p 415

    Google Scholar 

  39. Trimble RB, Ehrlich HL (1987) Appl Microbiol 16: 695

    Google Scholar 

  40. Ehrlich HL, Ingledew WJ, Salerno JC (1991). In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, London, p 147

    Google Scholar 

  41. Ingledew WJ, Cobley JC (1980) Biochim Biophys Acta 590: 141

    Article  CAS  Google Scholar 

  42. Ingledew WJ (1986). In: Ehrlich HL, Holmes DS (eds) Workshop on biotechnology for the mining, metal-refining and fossil fuel processing industries. Biotechn Bioeng Symp Nu. 16, Wiley, New York, p 23

    Google Scholar 

  43. Lovley DR, Phillips EJ, Lonergan DJ (1989) Appl Environ Microbiol 55: 700.

    CAS  Google Scholar 

  44. Serebrjanaja M, Yakhontova L, Petrova L (1993). In: Torma AE, Wey JE Lokshmanan VL (eds) Biohydrometallurgical technologies. The Minerals, Metals & Materials Society. vol 1 p 277

    Google Scholar 

  45. Stone AT, Morgan JJ (1984) Environ Sci Technol 18: 617

    Article  CAS  Google Scholar 

  46. Stone AT (1987) Geochim Cosmochim Acta 51: 919

    Article  CAS  Google Scholar 

  47. Ehrlich HL (1981) Geomicrobiology, Marcel Dekker, Inc. New York

    Google Scholar 

  48. Lovley DR, Phillips EJP (1988) Geomicrobiol J 6: 145

    Article  CAS  Google Scholar 

  49. Dubinima GA (1979) Microbilogy USSR 47: 471

    Google Scholar 

  50. Silverman MP, Lundgren DG (1959) J Bacteriol 77: 642

    Article  CAS  Google Scholar 

  51. Ghosh J, Imai K (1985) J Ferment Technol 6: 295

    Google Scholar 

  52. Ghosh J, Imai K (1985) J Ferment Technol 63: 259

    CAS  Google Scholar 

  53. Troshanov EP (1968) Mikrobiologia 38: 528

    Google Scholar 

  54. Noble EG, Baglin EG, Lampshire DL, Eisle JA (1991). In: Smith RW, Misra M (eds) Mineral bioprocessing. The Materials, Metals & Materials Society, p 233

    Google Scholar 

  55. Ehrlich HL, Yang SH, Mainwaring Jr. JD (1973) Zeit Allg Mikrobiologie 13: 39

    CAS  Google Scholar 

  56. Srimekanond A. Madgwick J, Pracejus B (1992) Australs. IMM Proc no 2: 77

    Google Scholar 

  57. Mero J (1962) Econ Geol 57: 747

    CAS  Google Scholar 

  58. Murray JW, Balistrieri LS, Paul B (1984) Geochim Cosmochim Acta 48: 1237

    Article  CAS  Google Scholar 

  59. Burns RG, Fuerstenau DW (1966) Amer Mineralogist 51: 895

    CAS  Google Scholar 

  60. Ehrlich HL (1984). In: 2nd International Seminar on the Offshore Mineral Resources. Offshore Prospecting and Mining Problems: Current Status and Future Developments, Germinal, Orleas, France, p 639

    Google Scholar 

  61. Rusin PA (1993) Microbial removal of residual metals from mine tailings and dump wastes. National Science Foundation, Phase I Final Report, p 16

    Google Scholar 

  62. Stone AT, Morgan JJ (1987). In: Stumm W (ed) Aquatic surface chemistry. Wiley-Interscience: New York, p 222

    Google Scholar 

  63. Ehrlich HL (1993). In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, Inc New York, vol 8, p 227

    Google Scholar 

  64. Rusin P, Sharp J, Arnold R, Sinclair NA, Young T (1992) Min Eng 44: 1467

    CAS  Google Scholar 

  65. Hensyl WR (ed) (1994) Bergey's manual of determinative bacteriology. 9th edn. Williams and Wilkens, Baltimore

    Google Scholar 

  66. Miller TL, Churchill BW (1986). In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, p 122

    Google Scholar 

  67. Perkins EC, Novielli F (1962) Bacterial leaching of manganese ores. US Department of the Interior. Bureau of Mines, Report no 6102

    Google Scholar 

  68. Kozub JA, Madgwick JC (1983) Proc Aust Inst Min Metall 288: 51

    CAS  Google Scholar 

  69. Silverio CM, Madgwick JC (1985) Proc Aust Inst Min Metall 290: 63

    CAS  Google Scholar 

  70. Veglio F, Terreri M, Toro L (1993). In: Torma AE, Wey JE, Lakshmanan VL (eds) Biohydrometallurgical technologies. The Minerals, Metals & Materials Society vol 1, p 269

    Google Scholar 

  71. Hart MJ, Madgwick JC (1987) Proc Aust Inst Min Metall 292: 61

    CAS  Google Scholar 

  72. Srimekanond A, Thangavelu V, madgwick J (1992) J Ind Microbiol 10: 217

    Article  CAS  Google Scholar 

  73. Hart MJ, Madgwick JC (1986) Proc Aust Inst Min Metall 291: 61

    CAS  Google Scholar 

  74. Marshall KC (1979). in: Trudinger PW, Swaine DJ (eds) Biogeochemical cycling of mineral forming elements. Elsevier, New York, p 253

    Google Scholar 

  75. Buys H, Chan SM, Chun UH, Cho DW, Davis P, MacKay B, Madgwick JC, Pannowitz D, Poi G, Varga R (1986) Proc Aust Inst Min Metall 291: 71

    CAS  Google Scholar 

  76. Rusin PA, Quintana L, Brainard JR, Strietelmeier, BA, Tait CD, Newton TW, Clark D, Palmer P, Ekberg SA (in press) Environ Sci Technol

    Google Scholar 

  77. Collins YE, Stotzky G (1989) Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria, John Wiley & Sons, New York, p 31

    Google Scholar 

  78. Holmes DS (1988) Mineral Metall Processing 5: 49

    CAS  Google Scholar 

  79. Holden PJ, Madgwick JC (1983) Proc Aust Inst Min Metall 286: 61

    CAS  Google Scholar 

  80. Espejo RT, Romero P (1987) Appl Environ Microbiol 53: 1907

    CAS  Google Scholar 

  81. Abbruzzese C, Duarte MY, Paponetti B, Toro L (1990) Minerals Eng 3: 307

    Article  CAS  Google Scholar 

  82. DeHuff GL (1965). In: Mineral facts and problems. Bureau of Mines Bulletin 630. US Depart of the Interior, Washington, DC, p 553

    Google Scholar 

  83. Henn JJ, Kirby RC, Normal LD (1968) Review of major proposed processes for rocovery of manganese from United States resources. Information circular 8368. Bureau of Mines, US Department of the Interior

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Rusin, P., Ehrlich, H. (1995). Developments in mcirobial leaching—mechanisms of manganese solubilization. In: Microbial and Eznymatic Bioproducts. Advances in Biochemical Engineering/Biotechnology, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102314

Download citation

  • DOI: https://doi.org/10.1007/BFb0102314

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59113-9

  • Online ISBN: 978-3-540-49190-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics