Skip to main content

Influence of the process parameters on the morphology and enzyme production of Aspergilli

  • Chapter
  • First Online:
Book cover Relation Between Morphology and Process Performances

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 60))

Abstract

Several papers have been published dealing with various fungi to determine their morphology, enzyme production or process performance. However, no publication considered all of these aspects simultaneously. In the case of the production of xylanase by Aspergillus awamori the interrelationship of various key parameters are investigated. The influence of the reactor type (shake flasks, stirred tank and airlift tower loop reactor), the medium composition (semisynthetic and complex medium with wheat bran of different sizes, respectively as well as different concentrations of phosphate), and the specific power input (stirrer speed) on the growth, morphology, physiology, and productivity of the fungus are investigated. The results reveal a complex interrelationship which explains why the published results are contradictory. Without considering all of the relevant parameters, it is not possible to make general conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

L:

length

M:

mass

T:

time, 1 dimensionless

A:

empirical constant 1

a:

empirical constant 1

C:

empirical constant 1

CPR:

CO2 production rate M L−1 T−1

D:

shear rate T−1

DR :

vessel diameter L

d:

impeller diameter L

dimax :

maximal internal diameter of the flasks L

dp :

pellet diameter L

dVF :

shear stress factor (diameter of the flocs) L

E:

eccentricity of the shaker L

EX :

pellet volume fraction 1

EM :

maximal pellet volume fraction 1

e:

shaking radius L

F:

degree of filling 1

Fr:

Froude number 1

g:

acceleration of gravity L T−2

K:

fluid consistency index M L−1T−n

kLa:

volumetric mass transfer coefficient T−1

k:

empirical constant 1

N:

rotation speed T−1

Ne:

Newton number 1

NeG :

Newton number in aerated medium 1

n:

flow behavior index 1

P:

power input M L2 T−3

PG :

power input in aerated medium M L2 T−3

QG :

gas throughput number 1

qG :

gas throughput L3 T−1

R:

roughness factor 1

Re:

Reynolds number 1

VS :

medium volume L3

VR :

active volume of the impeller L3

WSG :

superficial gas velocity L T−1

X:

cell mass concentration M L−3

YX/S :

yield coefficient of growth with respect to the substrate consumption 1

YP/S :

yield coefficient of product formation with respect to the substrate consumption 1

YP/X :

yield coefficient of product formation with respect to the cell mass formed 1

ηa :

apparent dynamic viscosity M L−1 T−1

μ:

specific growth rate T−1

υL :

kinematic viscosity of the medium L2 T−1

ρL :

density of the liquid medium M L−3

References

  1. Raper KB, Fennell DI (1965) The genus Aspergillus. The Williams & Wilkins Co, Baltimore

    Google Scholar 

  2. Smith JE (1994) Aspergillus, Biotechnol handbooks, vol 7. Plenum Press, London and New York

    Google Scholar 

  3. Röhr M, Kubicek CP, Kominek J (1983) Citric acid. In: Dellweg H (ed) Biotechnology, vol 3. Verlag Chemie Weinheim, p 419

    Google Scholar 

  4. Jernejc K, Cimerman A (1992) J Biotechnol 25:341

    Article  CAS  Google Scholar 

  5. Gomez R, Schnabel I, Garrido J (1988) Enzyme Microb Technol 10:188

    Article  CAS  Google Scholar 

  6. Reddy CA, Abouzied MM (1986) Enzyme Microb Technol 8:659

    Article  CAS  Google Scholar 

  7. Schmidt O, Angermann H, Frommhold-Treu I, Hoppe K (1995) Appl Microbiol Biotechnol 43:424

    Article  CAS  Google Scholar 

  8. Pandey A, Selvakumar P, Ashakumary L (1996) Process Biochem. 31:43

    Article  CAS  Google Scholar 

  9. Ghosh M, Das A, Mishra AK, Nanda G (1993) Enzyme Microb Technol 15:703

    Article  CAS  Google Scholar 

  10. Smith DC, Wood TM (1991) Biotechnol Bioeng 38:883

    Article  CAS  Google Scholar 

  11. Deschamps F, Huet MC (1985) Appl Microbiol Biotechol 22:177

    CAS  Google Scholar 

  12. Gokhale DV, Puntambekar US, Deobagkar DN (1986) Biotechnol Lett. 8:137

    Article  CAS  Google Scholar 

  13. Manolov RJ (1992) Appl Microbiol Biotechnol 37:32

    Article  CAS  Google Scholar 

  14. Metz B, de Bruijn EW, van Suijdam JC (1981) Biotechnol Bioeng 23:149

    Article  Google Scholar 

  15. Adams HL, Thomas CR (1988) Biotechnol Bioeng 32:707

    Article  CAS  Google Scholar 

  16. Reichl U, (1990) Einsatz eines Bildverarbeitungssystemes zur Erfassung der Morphologie und Wachstum myzelbindender Mikroorganismen in submerser Kultur. Dissertation. University Stuttgart

    Google Scholar 

  17. Reichl U, Buschulte TK, Gilles ED (1990) J Microscopry 158:55

    CAS  Google Scholar 

  18. Reichl U, Yang H, Gilles ED, Wolf H (1990) FEMS Microbiol Lett 67, 207–210

    Article  Google Scholar 

  19. Yang H, Reichl U, King R, Gilles ED (1992) Biotechnol Bioeng 39, 44

    Article  CAS  Google Scholar 

  20. Packer HL, Thomas CR (1990) Biotechnol Bioeng 35:870

    Article  CAS  Google Scholar 

  21. Reichl U, Gilles ED (1991) Biotechn Eng Stuttgart, p 336

    Google Scholar 

  22. Reichl U, King R, Gilles ED (1992) Biotechnol Bioeng 39, 164

    Article  CAS  Google Scholar 

  23. Tucker KG, Kelly T, Delagrazia P, Thomas CR (1992) Biotechnol Prog 8:353

    Article  CAS  Google Scholar 

  24. Durant G, Cox PW, Formisyn P, Thomas, CR (1994) Biotechnol Techn 8:759

    Article  CAS  Google Scholar 

  25. Olsvik E, Tucker KG, Thomas CR, Kristiansen B (1993) Biotechnol Bioeng 42:1046

    Article  CAS  Google Scholar 

  26. Tucker KG, Thomas CR (1993) Trans Ichem 71:111

    CAS  Google Scholar 

  27. Cox PW, Thomas CR (1992) Biotechnol Bioeng 39:945

    Article  CAS  Google Scholar 

  28. Treskatis SK (1995) Wachstum, Morphologie und Antibiotikaproduktion von Streptomyceten in Submerskultur, Verlag Shaker, Aachen

    Google Scholar 

  29. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Biotechnol Prog 11:93

    Article  CAS  Google Scholar 

  30. Gerlach SR (1996) Morphologische Untersuchungen an Aspergillus awamori. Dissertation. University of Hannover

    Google Scholar 

  31. Rumerhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagation errors. Nature (London) 323:533

    Article  Google Scholar 

  32. Gerlach D (1996) Zur Beurteilung von Meßgeräten in biotechnologischen Prozessen, Dissertation. University of Hannover

    Google Scholar 

  33. MacKay DJ (1992) Bayesian interpolation Neural Comp 4:(3) 415

    Google Scholar 

  34. Paul GC, Kent CA, Thomas CR (1993) Biotechnol Bioeng 42:11

    Article  CAS  Google Scholar 

  35. Paul GC, Kent CA, Thomas CR (1994) Biotechnol Bioeng 44:655

    Article  CAS  Google Scholar 

  36. Tucker KG, Thomas CR (1992) Biotechnol Lett 14:1071

    Article  Google Scholar 

  37. Packer HL, Keshavarz-Moore E, Lilly MD, Thomas CR (1992) Biotechnol. Bioeng 39:384

    Article  CAS  Google Scholar 

  38. Paul GC, Kent CA, Thomas CR (1992) Trans Ichem T Part C 70:13

    CAS  Google Scholar 

  39. Mohseni M, Allen DG (1995) Biotechnol Bioeng 48:257

    Article  CAS  Google Scholar 

  40. Freudenberg S, Fasold KI, Müller SR, Siedenberg D, Kretzmer G, Schügerl K, Giuseppin MLF (1996) J Biotechnol 46:265

    Article  CAS  Google Scholar 

  41. Darzynkiewicz Z, Kapuscinski J, Traganos F, Crissman KA (1987) Cytometry 8:138

    Article  CAS  Google Scholar 

  42. Monbouquette HG, Ollis DF (1988) Bio/Technology 6:1076

    Article  CAS  Google Scholar 

  43. Darzynkiewicz Z, Traganos F, Sharpless T, Melamet MR (1975) Exp Cell Res 90:411

    Article  CAS  Google Scholar 

  44. Darzynkiewicz Z, Traganos F, Sharpless T, Melamet MR (1975) Exp Cell Res 95:143

    Article  CAS  Google Scholar 

  45. Darzynkievicz Z, Traganos F, Sharpless T, Melamet MR (1977) J Histochem Cytochem 25:46

    Google Scholar 

  46. Vanhoutte B, Pons MN, Thomas CR, Louvel L, Vivier H (1995) Biotechnol Bioeng 48:1

    Article  CAS  Google Scholar 

  47. Matsuoka H, Yang HC, Homma T, Nemoto Y, Yamada S, Sumita O, Takatori K, Kurata H (1995) Appl Microbiol Biotechnol 43:102

    Article  CAS  Google Scholar 

  48. Dien BS, Scrienc F (1991) Biotechnol Progr 7:291

    Article  CAS  Google Scholar 

  49. Tanaka K, Yanagita T (1963) J Gen Appl Microbiol 9:1, 101

    Google Scholar 

  50. McClure WK, Park D, Robinson PM (1968) J Gen Microbiol 50:177

    CAS  Google Scholar 

  51. Grove SN, Bracker CE (1970) J Bacteriol 104:2, 989

    CAS  Google Scholar 

  52. Bradbury D, Mac Masters MM, Cull IM (1956) Cereal Chem 33:342

    Google Scholar 

  53. Bradbury D, Mac Masters MM, Cull IM (1956) Cereal Chem 33:361

    Google Scholar 

  54. Adolph S, Müller SR, Siedenberg D, Jäger K, Lehmann H, Schügerl K, Giuseppin MLF (1996) J Biotechnol 46:221

    Article  CAS  Google Scholar 

  55. Bauer R (1988) Meth Microbiol 20:113; b Probst W, Bauer, R. (1987) Verh. Deutsch. Zool. Ges. 80, 119–128

    Article  Google Scholar 

  56. Roth J (1982) The protein A-gold (pAg) technique—a qualitative and quantitative approach for antigen localization on thin sections. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 1. Acad Press, London, p 107

    Google Scholar 

  57. Jäger KM, Bergman B (1991) Planta 183:120

    Google Scholar 

  58. Weigel B, Hitzmann B, Kretzmer G, Schügerl K, Huwig A, Giffhorn F. (1996) J Biotechnol 50:93

    Article  CAS  Google Scholar 

  59. Schmidt WJ, Kuhlmann W, Schügerl K (1985) Appl Microbiol Biotechnol 21:78–84

    Article  CAS  Google Scholar 

  60. Siedenberg D, Gerlach SR, Weigel B, Schügerl K, Giuseppin MLF, Hunik J (1996) Production of xylanase by Aspergillus awamori on synthetic medium in stirred tank and airlift tower loop reactors. J Biotechnol 56:103

    Article  Google Scholar 

  61. Burnett TJ, Chavira R, Hagemann JH (1984) Anal Biochem 136:446

    Article  Google Scholar 

  62. Miller GL (1959) Anal Chem 31:426

    Article  CAS  Google Scholar 

  63. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, vol. 1, 3rd edn

    Google Scholar 

  64. Zoels B (1992) Quantifizierung und Optimierung der Sceening-Bedingungen im Schüttelkolben. Master thesis, Fachhochschule Mannheim

    Google Scholar 

  65. Milbradt C (1966) Leistungseintrag in Schüttelkolben bei erhöhten Viskositären Master thesis, Technical University Aachen

    Google Scholar 

  66. Henzler HJ, Schedel M (1991) Bioproc Eng 7:123

    Article  CAS  Google Scholar 

  67. Schultz JS (1964) Appl Microbiol 12:305

    CAS  Google Scholar 

  68. Schügerl K (1991) Bioreaction engineering, vol. 2: characteristic features of bioreactors. John Wiley & Sons, Chichester

    Google Scholar 

  69. Judat H (1977) Fortschritte der Verfahrenstechnik 15:(Abt.B) 141

    Google Scholar 

  70. Hoffmann J, Tralles S, Hempel DC (1992) Chem Ing Techn 64:953

    Article  Google Scholar 

  71. Biedermann A (1994) Scherbeanspruchung in Bioreaktoren. Dissertation, University Köln

    Google Scholar 

  72. Biedermann A, Henzler HJ (1994) Chem Ing Techn 66:209

    Article  CAS  Google Scholar 

  73. Patrick AJ, Kennedy MJ (1995) Biotechnol Lett 17:487

    Article  CAS  Google Scholar 

  74. Wittler R, Matthes R, Schügerl K (1983) Eur J Appl Microbiol Biotechnol 18:17

    Article  Google Scholar 

  75. Mitard A, Riba JP (1986) Appl Microbiol Biotechnol 25:245

    Article  Google Scholar 

  76. Olsvik ES, Kristiansen B (1992) Biotechnol Bioeng 40:1293

    Article  CAS  Google Scholar 

  77. Metzner AB, Feehs RH, Ramos HL, Otto RE, Tuthill JD (1961) AIChE Journal 7:3

    Article  CAS  Google Scholar 

  78. Deckwer WD (1991) Bubble column reactors. John Wiley & Sons, Chicester

    Google Scholar 

  79. Chisti MY (1989) Airlift Bioreactors. Elsevier Science Publishing, Amsterdam

    Google Scholar 

  80. Shu IS, Schumpe A (1992) Chem Ing Techn 64:560

    Article  Google Scholar 

  81. Deckwer WD, Nguyen-tien K, Schumpe A, Serpemen Y (1982) Biotechnol Bioeng 24:461

    Article  CAS  Google Scholar 

  82. Pandey A (1992) Process Biochem 27:109

    Article  CAS  Google Scholar 

  83. Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Enzyme Microb Technol 7:258

    Article  CAS  Google Scholar 

  84. Desgranges C, Vergoignan C, Georges M, Durand A (1991a) Appl Microbiol Biotechnol 35:200

    CAS  Google Scholar 

  85. Desgranges C, Georges M, Vergoignan C, Durand A (1991) Appl. Microbiol. Biotechnol. 35:206

    CAS  Google Scholar 

  86. Smiths JP, Rinzema A, Tramper J, Schlösser EE, Knol W (1996) Process Biochem 31:669

    Article  Google Scholar 

  87. Laukevics JJ, Apsite AF, Viesturs US, Tengerdy RP (1985) Biotechnol Bioeng 27:1687

    Article  CAS  Google Scholar 

  88. Aido KE, Hendry R, Wood BJ (1981) Eur J Appl Microbiol Biotechnol 12:6

    Article  Google Scholar 

  89. Siedenberg D, Gerlach SR, Schügerl K, Giuseppin MLF, Hunik J (1997). Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures (submitted)

    Google Scholar 

  90. Suijdam van JC, Metz B (1981) J Ferment Technol 59:329

    Google Scholar 

  91. Shamlou PA, Makagiansar HY, Ison AP, Lilly MD, Thomas CR (1994) Chem Eng Sci 49:(16) 2621

    Article  Google Scholar 

  92. Priede MA, Vanags JJ, Viesturs UE, Tucker KG, Bujalski W, Thomas CR (1995) Biotechnol Bioeng 48:266

    Article  CAS  Google Scholar 

  93. Nielsen J (1992) Adv in Biochem Eng./Biotechnol 46:187

    CAS  Google Scholar 

  94. Mitard A, Riba JP (1988) Biotechnol Bioeng 32:835

    Article  CAS  Google Scholar 

  95. Herbst H, Schumpe A, Deckwer WD (1992) Chem Eng Technol 15:425

    Article  CAS  Google Scholar 

  96. Schügerl K (1992) Comparison of different reactor designs and performances. In: Ladish M, Bose A (eds) Harnessing biotechnology for the 21st century. Am Chem Soc, p 232

    Google Scholar 

  97. Anderson NW, Clydesdale FM (1980) Food Science 45:336

    Article  CAS  Google Scholar 

  98. Dr Grandel Weizenkleie (1995). Neuform Deutschland, Keimdiät GmbH Augsburg

    Google Scholar 

  99. Siedenberg D, Gerlach SR, Czwalinna A, Schügerl K, Giuseppin MLF, Hunik J (1996) Production of xylanase by Aspergillus awamori on complex medium in stirred tank and airlift tower loop reactors. J Biotechnol 56:205

    Article  Google Scholar 

  100. Berovic M, Koloini T, Olsvik ES, Kristiansen B (1993) Chem Eng J 53:B35

    CAS  Google Scholar 

  101. Bosch A, Maronna RA, Yantoro OM (1995) Process Biochem 30:599

    Article  CAS  Google Scholar 

  102. Fasold KI (1995) Fluoreszenzmikroskopische Untersuchungen an Aspergillus awamori. Master Thesis, Institute for Technical Chemistry, University Hannover

    Google Scholar 

  103. Freudenberg S (1995) Immunofluoreszenztechniken an filamentösen Pilzen. Master Thesis, Institute for Technical Chemistry, University of Hannover

    Google Scholar 

  104. Nandakumar MP, Thakur MS, Raghavarao KSMS, Ghildal NP (1994) Process Biochem 29:545

    Article  CAS  Google Scholar 

  105. Taguchi H, Yoshida T, Tomita Y, Teramoto S (1968) J Ferment Technol 46:814

    Google Scholar 

  106. Carlsen M, Spohr A B, Nielsen J and Villadsen J (1996) Biotechnol. Bioeng. 49:266

    Article  CAS  Google Scholar 

  107. Galbraith J C, Smith J E (1969) Trans. Br. Mycol. Soc. 52:237

    Article  CAS  Google Scholar 

  108. Wittler R, Baumgaertl H, Lübbers DW, Schügerl K (1986) Biotechnol Bioeng 28: 1024

    Article  CAS  Google Scholar 

  109. Cronenberg CCH, Ottengraf SPP, van den Heuvel IC, Pottel F, Sziele D, Schügerl K, Bellgardt KH (1994) Bioproc Eng 10:209

    Google Scholar 

  110. Cronenberg CCH (1994) Biochemical engineering on a micro-scale: biofilms investigated with needle type glucose sensors. Dissertation, University of Amsterdam

    Google Scholar 

  111. Siedenberg D (1996) Grundlegende Untersuchungen zur Xylanase-Produktion von Aspergillus awamori Rührkesselreaktoren und im Airlift-Schlaufen-reaktor. Dissertation. University Hannover

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Schügerl (Volume Editor)

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Schügerl, K., Gerlach, S.R., Siedenberg, D. (1998). Influence of the process parameters on the morphology and enzyme production of Aspergilli . In: Schügerl, K. (eds) Relation Between Morphology and Process Performances. Advances in Biochemical Engineering/Biotechnology, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102283

Download citation

  • DOI: https://doi.org/10.1007/BFb0102283

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62567-4

  • Online ISBN: 978-3-540-68082-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics