Hemicellulases in the bleaching of chemical pulps

  • A. Suurnäkki
  • M. Tenkanen
  • J. Buchert
  • L. Viikari
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 57)


Hemicellulase-aided bleaching is the first full-scale biotechnical application in the pulp and paper industry which truly exploits the unique specificity and safety of biocatalysts. Hemicellulases are used to modify the structure of xylan and glucomannan in pulp fibers in order to enhance the chemical delignification. This technology can be combined with various types of kraft pulping processes and bleaching sequences. The aims of the enzymatic treatment depend on the actual mill conditions, and may be related to environmental demands, reduction of chemical costs, or maintenance or even improvement of product quality. The technology is applied on the mill scale in several countries. This review describes the principles of the enzyme-aided bleaching, the composition of the fiber substrates, the basic enzymology involved, and the present knowledge of the mechanisms of the action of enzymes, as well as the practical results and advantages obtained on the laboratory and industrial scale.


Kraft Pulp Kappa Number Chlorine Dioxide Residual Lignin Pulp Bleaching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viikari L, Ranua M, Kantelinen A, Sundquist J, Linko M (1986) Bleaching with enzymes. Proc 3rd Int Conf Biotechnology in the Pulp and Paper Industry, STFI, Stockholm, Sweden, p 67Google Scholar
  2. 2.
    Viikari L, Ranua M, Kantelinen A, Linko M, Sundquist J (1987) Application of enzymes in bleaching. Proc 4th Int Symp Wood and Pulping Chemistry, Paris, France, p 151Google Scholar
  3. 3.
    Puls J, Poutanen K, Körner H-U, Viikari L (1985) Appl Microbiol Biotechnol 22: 416CrossRefGoogle Scholar
  4. 4.
    Paice MG and Jurasek L (1984) J Wood Chem Technol 4: 187Google Scholar
  5. 5.
    Lavielle P, Koljonen M, Piiroinen P, Koponen R, Reid D, Fredriksson R (1992) Three large scale uses of xylanases in kraft pulp bleaching. Proc 4th Int Conf New Available Techniques and Current Trends, Eur Pulp and Paper Week, Bologna, Italy, p 203Google Scholar
  6. 6.
    Viikari L, Kantelinen A, Sundqvist J, Linko M (1994) FEMS Microb Rev 13: 335CrossRefGoogle Scholar
  7. 7.
    Paice MG, Bourbonnais R, Reid ID (1995) Tappi J 78: 161Google Scholar
  8. 8.
    Call HP, Mücke I (1995) Further improvements of the Laccase-Mediator-System (LMS) for enzymatic delignification (bleaching) and results from large scale trials. 1995 Int Non-Chlorine Bleaching Conf, Abstracts, Amelia Island, FLGoogle Scholar
  9. 9.
    Bajpai P, Bajpai PK (1992) Process Biochem 27: 319CrossRefGoogle Scholar
  10. 10.
    Onysko KA (1993) Biotech Adv 11: 179CrossRefGoogle Scholar
  11. 11.
    Denault C, Leduc C, Valade JL (1994) Tappi J 77: 125Google Scholar
  12. 12.
    Tolan JS (1992) The use of enzymes to enhance pulp bleaching. Proc TAPPI Pulping Conf, Book 1, Boston MA, p 13Google Scholar
  13. 13.
    Sjöström E (1993) Wood Chemistry, Fundamentals and Application, 2 edn, Academic Press Inc, San Diego, CAGoogle Scholar
  14. 14.
    Meier H (1985) Localization of Polysaccharides in Wood Cell Walls. In: Higuchi T (ed) Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, FL p 43Google Scholar
  15. 15.
    McDonough TJ (1995) Tappi J 78: 55Google Scholar
  16. 16.
    Malinen R, Fuhrmann A (1995) Paper Timber 77: 78Google Scholar
  17. 17.
    Süss HU, Eul W, Helmling O (1989) Das Papier 43: 318Google Scholar
  18. 18.
    Hamilton JK, Partlow EV, Thompson NS (1958) Tappi 41: 803Google Scholar
  19. 19.
    Croon I, Enström BF (1961) Tappi 44: 870Google Scholar
  20. 20.
    Teleman A, Harjunpää V, Tenkanen M, Buchert J, Hausalo T, Drakenberg T, Vuorinen T (1995) Carbohydr Res 272: 55CrossRefGoogle Scholar
  21. 21.
    Buchert J, Teleman A, Harjunpää V, Tenkanen M, Viikari L, Vuorinen T (1995) Tappi J 78: 125Google Scholar
  22. 22.
    Yllner S, Enström B (1956) Svensk Papperstidn 59: 229Google Scholar
  23. 23.
    Yllner S, Östberg K, Stockman L (1957) Svensk Papperstidn 60: 795Google Scholar
  24. 24.
    Rydholm SA (1965) Pulp processes. Interscience, New York, p 596Google Scholar
  25. 25.
    Mitikka M, Teeäär R, Tenkanen M, Laine J, Vuorinen T (1995) Sorption of xylans on cellulose fibers. Proc 8th Int Symp Wood and Pulping Chem, Vol III, Helsinki, p 231Google Scholar
  26. 26.
    Simonsson R (1971) Svensk Papperstidn 74: 691Google Scholar
  27. 27.
    Jansson J, Palenius I, Stenlund B, Sågfors, P-E (1975) Paperi ja Puu 57: 387Google Scholar
  28. 28.
    Laine J, Stenius P, Carlsson G, Ström G (1994) Cellulose 1: 145CrossRefGoogle Scholar
  29. 29.
    Heijnesson A, Simonson R, Westermark U (1995) Holzforschung 49: 313Google Scholar
  30. 30.
    Buchert J, Carlsson G, Viikari L, Ström G (1996) Holzforschung 50: 69Google Scholar
  31. 31.
    Suurnäkki A, Heijnesson A, Buchert J, Viikari L, Westermark U (1996) J Pulp Paper Sci 22:J43Google Scholar
  32. 32.
    Aurell R, Hartler N (1965) Svensk Papperstidn 68: 59Google Scholar
  33. 33.
    Casebier RL, Hamilton JL (1965) Tappi 48: 664Google Scholar
  34. 34.
    Luce JE (1964) Pulp Paper Mag Can 65: T419Google Scholar
  35. 35.
    Krause T (1967) Das Papier 21: 385Google Scholar
  36. 36.
    Gibblewhite RP, Brookes D (1976) Wood Sci Technol 10: 39CrossRefGoogle Scholar
  37. 37.
    Scott RW (1984) J Wood Chem Technol 4: 199Google Scholar
  38. 38.
    Bachner K, Fischer K, Bäucker E (1993) Das Papier 10A: V30Google Scholar
  39. 39.
    Annegren GE, Rydholm SA (1959) Svensk Papperstidn 62: 737Google Scholar
  40. 40.
    Kallmes O (1960) Tappi 43: 143Google Scholar
  41. 41.
    Koeppen A von (1964) Tappi 47: 589Google Scholar
  42. 42.
    Biely P (1985) Trends in Biotechnology 3: 286CrossRefGoogle Scholar
  43. 43.
    Poutanen K (1988) Characterization of xylanolytic enzymes for potential applications. PhD Thesis, Technical Research Centre of Finland, Publications 47, Espoo, FinlandGoogle Scholar
  44. 44.
    Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and Enzymatic Degradation of Wood and Wood Components. Timell TE (ed), Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. 45.
    Wong KKY, Saddler JN (1992) Critical Revs Biotechnol 12: 413Google Scholar
  46. 46.
    Coughlan MP, Hazlewood GP (1993) Biotechnol Appl Biochem 17: 259Google Scholar
  47. 47.
    Wong KKY, Tan LUL, Saddler JN (1988) Microbiol Revs 52: 305Google Scholar
  48. 48.
    Viikari L, Tenkanen M, Buchert J, Rättö M, Bailey M, Siika-aho M, Linko M (1993) Hemicellulases for industrial applications. In: Saddler JN (ed) Bioconversion of Forest and Agricultural Plant Residues, CAB International, Wallingford, UK, p 131Google Scholar
  49. 49.
    Henrissat B and Bairoch A (1993) Biochem J 293: 781Google Scholar
  50. 50.
    Biely P, Kluepfel D, Morosoli R, Shareck F (1993) Biochim Biophys Acta 1162: 246Google Scholar
  51. 51.
    Nishitani K, Nevins DJ (1991) J Biol Chem 266: 6539Google Scholar
  52. 52.
    Tuohy MG, Puls J, Clayssens M, Vrsanskas M, Coughlan MP (1993) Biochem J 290: 515Google Scholar
  53. 53.
    Okada H (1989) Adv Prot Des 12: 81Google Scholar
  54. 54.
    Campbell RL, Rose DR, Wakarchuk WW, To R, Sung W, Yaguchi M (1993) Comparison of the structures of the 20 kd xylanases from Trichoderma harzianum and Bacillus circulans. Proceedings of the Second TRICEL Symposium on Trichoderma Cellulases and Other Hydrolases, Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 63Google Scholar
  55. 55.
    Törrönen A, Harkki A, Rouvinen J (1994) EMBO J 13: 2493Google Scholar
  56. 56.
    Törrönen A, Rouvinen J (1995) Biochemistry 34: 847CrossRefGoogle Scholar
  57. 57.
    Hazlewood GP, Gilbert HJ (1992) In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylan and Xylanases. Elsevier, Amsterdam, p 259Google Scholar
  58. 58.
    Sakka K, Kojima Y, Kondo T, Karita S, Ohmiya K, Shimada K (1993) Biosci Biotech Biochem 57: 273Google Scholar
  59. 59.
    Winterhalter C, Liebl W (1995) Appl Environm Microbiol 61: 1810Google Scholar
  60. 60.
    Shareck F, Roy C, Yaguchi M, Morosoli R, Kluepfel D (1991) Gene 107: 75CrossRefGoogle Scholar
  61. 61.
    Irving D, Jung ED, Wilson DB (1994) Appl Environm Microbiol 60: 763Google Scholar
  62. 62.
    Honda H, Kudo T, Ikura Y, Horikoshi K (1985) Can J Microbiol 31: 538CrossRefGoogle Scholar
  63. 63.
    Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Appl Environm Microbiol 59: 2311Google Scholar
  64. 64.
    Bragger JM, Daniel RM, Coolbear T, Morgan HW (1989) Appl Microbiol Biotechnol 31: 556CrossRefGoogle Scholar
  65. 65.
    Simpson HD, Haufler UR, Daniel RM (1991) Biochem J 277: 413Google Scholar
  66. 66.
    Sunna A, Pils J, Antranikian A (1994) Characterization of the xylanolytic enzyme system of the thermophilic eubacterium Thermotoga thermarum, In: Proc 6th European Congress on Biotechnology, Elsevier, Amsterdam, p 267Google Scholar
  67. 67.
    Saul DJ, Williams LC, Reeves RA, Gibbs MD, Berqvist PL (1995) Appl Environm Microbiol 61: 4110Google Scholar
  68. 68.
    Berqvist P (1995) Hemicellulolytic enzymes from extremely thermophilic bacteria-applications of molecular genetics to pulp bleaching. Proceedings of the 8th International Symposium on Wood and Pulping Chemistry, vol I, Helsinki, p 263Google Scholar
  69. 69.
    McCleary BV (1991) Comparison of endolytic hydrolases that depolymerize 1,4-β-D-mannan, 1,5-α-L-arabinan and 1,4-β-D-galactan. In: Leatham GF, Himmel ME (eds) Enzymes in Biomass Conversion. ACS Symp Ser 460, American Chemical Society, Washington, p 437Google Scholar
  70. 70.
    Kusakabe I, Park GG, Kumita N, Yasui T, Murakami K (1988) Agr Biol Chem 52: 519Google Scholar
  71. 71.
    Stålbrand H, Saloheimo A, Vehmaanperä J, Henrissat B, Penttilä M (1995) Appl Environm Microbiol 61: 1090Google Scholar
  72. 72.
    Tenkanen M, Buchert J, Viikari L (1995) Enz Microbiol Technol 17: 499CrossRefGoogle Scholar
  73. 73.
    Morris DD, Reeves RA, Gibbs MD, Saul DJ, Berqvist PL (1995) Appl Environm Microbiol 61: 2262Google Scholar
  74. 74.
    Adams MWW, Kelly RM (1995) Chem Eng 73: 32Google Scholar
  75. 75.
    Horikoshi K (1991) Mannan degrading enzymes produced by Bacillus species AM-001. In: Leatham GF, Himmel ME (eds) Enzymes in Biomass Conversion. ACS Symp Ser 460, American Chemical Society, Washington, p 52Google Scholar
  76. 76.
    Margolles-Clark E, Tenkanen M, Söderlund H, Penttilä M (1996) European J Biochem (in press)Google Scholar
  77. 77.
    Stone JE, Scallan AM, Donefer E, Ahlgren E (1969) Adv Chem Ser 95: 219CrossRefGoogle Scholar
  78. 78.
    Grethlein HE (1985) Bio/Technol 1: 155CrossRefGoogle Scholar
  79. 79.
    Wong KKY, Deverell KF, Macie KL, Clark TA, Donaldson LA (1988) Biotechnol Bioeng 31: 447CrossRefGoogle Scholar
  80. 80.
    Page DH (1976) Wood Fiber 7: 246Google Scholar
  81. 81.
    Puls J, Poutanen K, Lin JJ (1990) Accessibility of hemicellulose in hardwood pulps to enzymes. In: Kirk KT, Chang H-M (eds) Biotechnology in Pulp and Paper Manufacture. Butterworth-Heinemann, Boston, p 183Google Scholar
  82. 82.
    Yamasaki T, Hosoya S, Chen C-L, Gratzl JS, Chang H-M (1981) Characterization of residual lignin in kraft pulp. Proc Int Symp Wood Pulp Chem, Stockholm, p 234Google Scholar
  83. 83.
    Iversen T, Wännström S (1986) Holzforschung 40: 19Google Scholar
  84. 84.
    Gellerstedt G, Lindfors E-L (1991) On the structure and reactivity of residual lignin in kraft pulp fibres. Proc Int Pulp Bleaching Conf, vol 1, SPCI, Stockholm, p 73Google Scholar
  85. 85.
    Stone JE, Scallan AM (1968) Pulp Paper Mag Can 69: T288Google Scholar
  86. 86.
    Kantelinen A, Hortling B, Sundqvist J, Linko M, Viikari M (1993) Holzforschung 47: 318Google Scholar
  87. 87.
    Yang JL, Eriksson K-EL (1992) Holzforschung 46: 481Google Scholar
  88. 88.
    Hortling B, Korhonen M, Buchert J, Sundqvist J, Viikari L (1994) Holzforschung 48: 441Google Scholar
  89. 89.
    Patel RN, Grabski AC, Jeffries TW (1993) Appl Microbiol Biotechnol 39: 405.CrossRefGoogle Scholar
  90. 90.
    Wong KKY, Clarke P, Nelson SL (1996) ACS Symp Ser 618, p 352Google Scholar
  91. 91.
    Suurnäkki A, Heijnesson A, Buchert J, Westermark U, Viikari L (1996) J Pulp Paper Sci 22: J91Google Scholar
  92. 92.
    Pedersen LS, Kihlgren P, Nielsen AM, Munk N, Holm HC, Choma PP (1992) Enzymatic bleach boosting of kraft pulp laboratory and mill scale experiences. Proc Tappi 1992 Pulping Conf, Book 1, Tappi Press, Atlanta, GA, p 31Google Scholar
  93. 93.
    Suurnäkki A, Kantelinen A, Buchert J, Viikari L (1994) Tappi J 77: 211Google Scholar
  94. 94.
    Allison R, Clark T, Suurnäkki A (1995) Effect of modified kraft pulping on enzyme-assisted bleaching. Proc 49th Appita Ann General Conf, Hobart, Tasmania, p 157Google Scholar
  95. 95.
    Suurnäkki A, Clark T, Allison R, Viikari L, Buchert J (1996) Tappi J 79: 111Google Scholar
  96. 96.
    Munk N, Nissen AM, Vollmond T, Lund H (1992) Bleach boosting with xylanases: recent research results. Proc 47th Appita Ann Gen Conf, Vol 1, Rotorua, New Zealand, p 257Google Scholar
  97. 97.
    Mora F, Ruel K, Comtat J, Joseleau J-P (1986) Holzforschung 40: 85CrossRefGoogle Scholar
  98. 98.
    Allison RW, Clark TA, Ellis MJ (1995) Appita 48: 201Google Scholar
  99. 99.
    De Jong E, Wong KKY, Windsor LR, Saddler JN (1996) Xylanase prebleaching of model pulps. In: Messner K, Srebotnik E (eds) Biotechnology in Pulp and Paper Industry-Advances in Applied and Fundamental Research, WUA Universitätsverlag, Vienna, p 127Google Scholar
  100. 100.
    Suurnäkki A (1996) PhD Thesis, Technical Research Centre of Finland, Publications 267, Espoo, FinlandGoogle Scholar
  101. 101.
    Saake B, Clark T, Puls J (1995) Holzforschung 49: 60Google Scholar
  102. 102.
    Suurnäkki A, Heijnesson A, Buchert J, Tenkanen M, Viikari L, Westermark U (1996) J Pulp Paper Sci 22: J78Google Scholar
  103. 103.
    Farrell RL, Viikari L, Senior DJ (1996) Enzyme treatments of pulp. In: Dence CW, Reeve DW (eds) Pulp Bleaching. Tappi Press, Atlanta, p 363Google Scholar
  104. 104.
    Gellestedt G, Li J-B (1995) Xylan degradation products from birch kraft pulp, Proc 8th International Symposium on Wood and Pulping Chemistry, Helsinki, p 533Google Scholar
  105. 105.
    Vuorinen T, Teleman A, Fagerström P, Buchert J, Tenkanen M (1996) Selective hydrolysis of hexenuronic acid groups and its application in ECF and TCF bleaching of kraft pulps, International Pulp Bleaching Conference, Book 1, Washington D.C., p 43Google Scholar
  106. 106.
    Buchert J, Salminen J, Siika-aho M, Viikari L (1993) Holzforschung 47: 473Google Scholar
  107. 107.
    Clark TA, McDonald AG, Senior DJ, Mayers PR (1990) Mannanase and xylanase treatment of softwood chemical pulps: effects on pulp properties and bleachability. In: Kirk KT, Chang H-M (eds) Biotechnology in the Pulp and Paper Manufacture. Butterworth-Heinemann, Boston, p 153Google Scholar
  108. 108.
    Bailey MJ, Biely P, Poutanen K (1992) J Biotechnol 23: 257CrossRefGoogle Scholar
  109. 109.
    Puls J, Poutanen K, Körner H-U, Viikari L (1985) Appl Microbiol Biotechnol 22: 416CrossRefGoogle Scholar
  110. 110.
    Buchert J, Siika-aho M, Pere J, Valkeajärvi A, Viikari L (1993) Biotechnol Techn 7: 785CrossRefGoogle Scholar
  111. 111.
    Kantelinen A, Suurnäkki A, Buchert J, Hortling B, Viikari L (1993) Enzymatic solubilization of xylans in kraft pulps. Proc 7th Int Symp Wood and Pulping Chemistry, vol 2, Beijing, China, p 626Google Scholar
  112. 112.
    Buchert J, Ranua M, Kantelinen A, Viikari L (1992) Appl Microbiol Biotechnol 37: 825CrossRefGoogle Scholar
  113. 113.
    Buchert J, Tenkanen M, Viikari L, Pitkänen M (1993) Tappi J 76: 131Google Scholar
  114. 114.
    Scallan AM (1982) Tappi J 66: 73Google Scholar
  115. 115.
    Buchert J, Viikari L (1995) Paper Timber 77: 582Google Scholar
  116. 116.
    Paice M, Bernier M, Jurasek L (1988) Biotechnol Bioeng 32: 235CrossRefGoogle Scholar
  117. 117.
    Kantelinen A, Rättö M, Sundqvist J, Ranua M, Viikari L, Linko M (1988) Hemicellulases and their potential role in bleaching. Proc 1988 Int Pulp Bleaching Conf, Tappi, Orlando, FL, p 1Google Scholar
  118. 118.
    Viikari L, Kantelinen A, Rättö M, Sundqvist J (1991) Enzymes in pulp and paper processing. In: Leatham GF, Himmel ME (eds) Enzymes in Biomass Conversion. ACS Symp Ser 460, American Chemical Society, Washington, p 12Google Scholar
  119. 119.
    Tenkanen M, Buchert J, Puls J, Poutanen K, Viikari L (1992) Two main xylanases of Trichoderma reesei and their use in pulp processing. In: Kuwahara M, Shimada M (eds) Biotechnology in Pulp and Paper Processing, Elsevier, Amsterdam, p 547Google Scholar
  120. 120.
    Tenkanen M, Puls J, Poutanen K (1992) Enzyme Microb Technol 14: 566CrossRefGoogle Scholar
  121. 121.
    Rättö M, Mathrani IM, Ahring B, Viikari L (1994) Appl Microbiol Biotechnol 41: 130Google Scholar
  122. 122.
    Clark TA, Steward D, Bruce M, McDonald A, Singh A, Senior D (1991) Appita 44: 389Google Scholar
  123. 123.
    Buchert J, Ranua M, Siika-aho M, Pere J, Viikari L (1994) Appl Microbiol Biotechnol 40: 941CrossRefGoogle Scholar
  124. 124.
    Buchert J, Kantelinen A, Suurnäkki A, Viikari L, Jansson J (1995) Holzforschung 49: 439CrossRefGoogle Scholar
  125. 125.
    Christov LP, Prior BA (1994) Appl Microbiol Biotechnol 42: 492Google Scholar
  126. 126.
    Koponen R (1991) Pulp Paper Int 33: 20Google Scholar
  127. 127.
    Ledoux P, Detroz R, deBuyl E, Shetty J, Troughton N, Presley JR (1993) Use of bacterial xylanase in chlorine-free bleaching sequences. Proc TAPPI pulping Conf, Atlanta, GA, p 1057Google Scholar
  128. 128.
    Yang JL, Lu G, Eriksson K-EL (1992) Tappi J 75: 95Google Scholar
  129. 129.
    Yang JL, Lu G, Eriksson K-EL (1993) Tappi J 76: 91Google Scholar
  130. 130.
    Yang JL, Cates DH, Law SE, Eriksson K-EL (1994) Tappi J 77: 243Google Scholar
  131. 131.
    Paice MG, Bernier R, Jurasek L (1988) Biotechnol Bioeng 32: 235CrossRefGoogle Scholar
  132. 132.
    Pere J, Siika-aho M, Buchert J, Viikari L (1995) Tappi J 78: 71Google Scholar
  133. 133.
    Werthemann DP, Tannar D, Koljonen M (1993) Enzymatic pre-bleaching of Pinus radiata pulp. Proc 47th Appita Ann Gen Conf, vol 1, Rotorua, New Zealand, p 249Google Scholar
  134. 134.
    Jäger A, Sinner M, Purkarthofer H, Esterbauer H, Ditzelmüller G (1992) Biobleaching with xylanase from thermophilic fungus. In: Kuwahara M, Shimida M (eds) Biotechnology in the Pulp and Paper Industry, UNI Publishers Co, Tokyo Japan, p 115Google Scholar
  135. 135.
    Scott BP, Young F, Paice MG (1993) Pulp Paper Canada 94: T75Google Scholar
  136. 136.
    Jean P, Hamilton J, Senior DJ (1994) Mill trial experiences with xylanase: AOX and chemical reductions. Proc 80th CPPA Ann Meeting, Montreal, Quebec, Canada, p 229Google Scholar
  137. 137.
    Dunlop-Jones N, Grönberg V (1994) Recent developments in the application of xylanase enzymes in elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. Proc 80th CPPA Ann Meeting, Montreal, Quebec, Canada, p 191Google Scholar
  138. 138.
    Turner JC, Skerker PS, Burns BJ, Howard JC, Alonso MA, Andres JL (1992) Tappi J 75: 83Google Scholar
  139. 139.
    Senior DJ, Hamilton J, Bernier RL, du Manior JR (1992) Tappi J 75: 125Google Scholar
  140. 140.
    Eriksson K-E (1995) Svensk Papperstidn 98: 55Google Scholar

Copyright information

© Springer-Verlag 0223 0247 V 2 1997

Authors and Affiliations

  • A. Suurnäkki
    • 1
  • M. Tenkanen
    • 1
  • J. Buchert
    • 1
  • L. Viikari
    • 1
  1. 1.VTT Biotechnology and Food ResearchVTTFinland

Personalised recommendations