Skip to main content

Biotechnological production of flavour-active lactones

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 55))

Abstract

Biotechnology lends itself to the production of natural flavour materials, which can either be obtained as complex mixtures or pure, individual flavour components. Examples of the latter category are acids, alcohols, esters, aldehydes, ketones and lactones. Biotechnological processes are reviewed which can be used to produce those γ- and δ-lactones which are important to the flavour industry. Emphasis is placed upon fermentative processes using microorganisms capable of performing β-oxidative degradation reactions. The preferred substrates in this type of biotransformation are hydroxy fatty acids which can themselves be obtained enzymatically or extracted from natural sources. Certain microorganisms are capable of hydroxylating fatty acids, thereby giving rise to the immediate precursors of γ- and δ-lactones. The intramolecular esterification of hydroxy fatty acids can be catalysed by certain lipases. The lipase from Candida antarctica is also capable of converting some cyclic ketones to the corresponding lactones via the Baeyer-Villiger reaction.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maga JA (1976) Crit Rev Food Sci Nutr 10: 1

    Article  Google Scholar 

  2. Siek TJ, Albin JA, Sather LA and Lindsay RC (1971) J Dairy Sci 54: 1

    Article  CAS  Google Scholar 

  3. Tressl R (1986) In: Biogeneration of Aromas, ACS Symposium Series 317: 114

    Google Scholar 

  4. Roxburgh JM, Spencer JFT and Salleus HR (1954) J Agri Food Chem 2: 1121

    Article  CAS  Google Scholar 

  5. Hock R, Benda I and Schreier P (1984) Z Lebensm Unters Forsch 179: 450

    Article  CAS  Google Scholar 

  6. Berger RG, Neuhauser K and Drawert F (1987) Biotechnol Bioeng 30: 987

    Article  CAS  Google Scholar 

  7. Labows JN, McGinley KJ, Leyden JJ and Webster GF (1979) Appl Environ Microbiol 38: 412

    CAS  Google Scholar 

  8. Berger RG, Neuhauser K and Drawert F (1986) Z Naturforsch 41c: 963

    Google Scholar 

  9. Muys GT, van der Ven B and De Jonge AP (1962) Nature 194: 995

    Article  CAS  Google Scholar 

  10. Tahara S and Mizutani J (1975) Agric Biol Chem 39: 281

    CAS  Google Scholar 

  11. Moss MO, Jackson RM and Rogers D (1973) Phytochem Rep 14: 2706

    Article  Google Scholar 

  12. Tahara S, Fujiwara K and Mizutani J (1973) Agric Biol Chem 37: 2855

    CAS  Google Scholar 

  13. Welsh FW, Murray WD and Williams RE (1989) Crit Rev Biotech 9: 105

    CAS  Google Scholar 

  14. Gatfield IL, Güntert M, Sommer H and Werkhoff P (1993) Chem Mikrobiol Technol Lebensm 15: 165

    CAS  Google Scholar 

  15. Farbood M and Willis B (1983) WO 83/01072

    Google Scholar 

  16. Cheetham PSJ, Maume KA and de Rooij JFM (1987) Eur Pat Appl 0/258,993

    Google Scholar 

  17. Cardillo R, Fuganti C, Sacerdote G, Barbeni M, Cabella P and Squarcia F (1989) Eur Pat Appl O/356,291

    Google Scholar 

  18. Okui S, Uchiyama M, Mizugaki M and Sugawara A (1963) Biochem Biophys Acta 70: 346

    Article  CAS  Google Scholar 

  19. Farbood MI, Morris JA, Sprecker MA, Bienkowski LJ and Miller KP (1990) US Patent 4,946,782

    Google Scholar 

  20. Gocho S and Yamada T (1989) Jap Patent 3,198,737

    Google Scholar 

  21. Cheetham PSJ (1993) Trends Biotech 11: 478

    Article  CAS  Google Scholar 

  22. Meyer J (1991) German Pat 4,126,997

    Google Scholar 

  23. Soda K (1987) Proc World Conf Biotechnol Fats Oils Ind: 178

    Google Scholar 

  24. Wink J, Voelskow H, Grabley S and Deger HM (1987) Eur Pat Appl 0/283,950

    Google Scholar 

  25. Gatfield IL and Sommer H submitted for publication.

    Google Scholar 

  26. Boog ALGM, Peters ALJ and Roos R (1990) Eur Pat Appl 0/409,321

    Google Scholar 

  27. Cardillo R, Fronza G, Fuganti C, Grasseli P, Mele A, Pizzi D, Allegrone G, Barbeni M and Pisciotta AJ (1991) Org Chem 56: 5237

    Article  CAS  Google Scholar 

  28. Page GV and Eilerman RG (1989) WO Pat Appl 89/12104

    Google Scholar 

  29. Martin D, Iacozio G, Ferrand D, Buono G and Triantaphylides C (1994) Biocatalysis 11: 47

    Google Scholar 

  30. Van der Schaft PH, ter Burg N, van den Bosch S and Cohen AM (1992) Appl Microbiol Biotechnol 36: 712

    Google Scholar 

  31. Fronza G, Fuganti C and Grasselli P (1992) Tetrahedron Lett 33: 6375

    Article  CAS  Google Scholar 

  32. Van der Schaft PH and de Laat WTAM (1989) Eur Pat Appl 0/425,001

    Google Scholar 

  33. Cardillo R, Fuganti C, Barbeni M and Allegrone G (1993) Eur Pat Appl 0/577,463

    Google Scholar 

  34. Berger RG, Neuhäuser K and Drawert F (1986) Z Naturforsch 41c: 963

    Google Scholar 

  35. Farbood M, McLean LB, Morris JA and Bondarovich HA (1992) US Pat 5,112,803

    Google Scholar 

  36. Belin JM, Bensoussan M and Serrano-Carreon L (1992) Trends Food Sci Technol 3: 11

    Article  CAS  Google Scholar 

  37. Labows JN, Webster G and McGinley K (1983) US Pat 4,396,715

    Google Scholar 

  38. Sarris J and Latrasse A (1985) Agric Biol Chem 49: 3227

    CAS  Google Scholar 

  39. El-Sharkawy SH, Yang W, Dostal L and Rosazza JPN (1992) Appl Environ Microbiol 58: 2116

    CAS  Google Scholar 

  40. Gocho S and Yamada T (1989) Jap Patent 3,198,787

    Google Scholar 

  41. Farbood M, Morris JA and McLean LB (1992) Eur Pat Appl 0/578,388

    Google Scholar 

  42. Giesel-Bühler H, Bartsch FO, Kneifel H, Sahm H and Schmid R (1986) Eur Pat Appl 0/230,043

    Google Scholar 

  43. Litchfield JH and Pierce GE (1986) US Pat 4,582,804

    Google Scholar 

  44. Collins RP and Halim AF (1972) J Agric Food Chem 20: 437

    Article  CAS  Google Scholar 

  45. Simon A, Dunlop RW, Ghisalberti EL and Sivasithamparam K (1988) Soil Biol Biochem 20: 263

    Article  CAS  Google Scholar 

  46. Kretschmer A (1981) Ph.D. Thesis University Braunschweig, Germany

    Google Scholar 

  47. Jeffcoat R and willis BJ (1988) Dev Food Sci 18: 743

    CAS  Google Scholar 

  48. Halling PJ (1984) Enzyme Microb Technol 6: 513

    Article  CAS  Google Scholar 

  49. Kastle JH and Loevenhart AS (1900) J Am Chem Soc 24: 491

    Google Scholar 

  50. Gatfield IL and Sand T (1982) German Pat 3,108,927

    Google Scholar 

  51. Gatfield IL (1984) Ann New York Acad Sci 434: 569

    Article  CAS  Google Scholar 

  52. Makita A, Nihira T and Yamada Y (1987) Tetrahedron Lett. 28: 805

    Article  CAS  Google Scholar 

  53. Robinson GK, Alston MJ, Knowles CJ, Cheetham PSJ and Motion KR (1994) Enzyme Microb Technol 16: 855

    Article  CAS  Google Scholar 

  54. Gutman AL, Zuobi K and Boltansky A (1987) Tetrahedron Lett 28: 3861

    Article  CAS  Google Scholar 

  55. Huffer M and Schreier P (1991) Tetradron Asymm 2: 1157

    Article  CAS  Google Scholar 

  56. Yamada H, Sugai T, Ohta H and Yoshikawa S (1990) Agric Biol Chem 54: 1579

    CAS  Google Scholar 

  57. Gatfield IL (1990) In: Bessiere, Y, Thomas AF (eds), Flavour Science and Technology. J Wiley & Sons, Chichester New York Brisbane Toronto Singapore, p 167

    Google Scholar 

  58. Bourdineaud JP, Ehret C and Petrzilka M, WO Pat Appl 9407-887

    Google Scholar 

  59. Soda Aromatic Co Ltd (1993) Jap Patent 06,319,589

    Google Scholar 

  60. Walsh CT and Chen JYC (1988) Angew Chem 100: 342

    CAS  Google Scholar 

  61. Alphand V, Archelas A and Furstoss R (1990) Biocatalysis 3: 73

    CAS  Google Scholar 

  62. Abril O, Ryerson CC, Walsh C and Whitesides GM (1989) Bioorganic Chem 17: 41

    Article  CAS  Google Scholar 

  63. Lemoult SC, Richardson PF and Roberts SM (1995) J Chem Soc Perkin Trans 1: 89

    Article  Google Scholar 

  64. Wallen LL, Davis EN, Wu YV and Rohwedder WK (1971) Lipids 6: 745

    Article  CAS  Google Scholar 

  65. Princen LH (1979) J Amer Oil Chem Soc 56: 845

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. G. Berger (Volume Editor)W. Babel H. W. Blanch Ch. L. Cooney S. -O. Enfors K. -E. L. Eriksson A. Fiechter A. M. Klibanov B. Mattiasson S. B. Primrose H. J. Rehm P. L. Rogers H. Sahm K. Schügerl G. T. Tsao K. Venkat J. Villadsen U. von Stockar C. Wandrey

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag 0150 A109 V

About this chapter

Cite this chapter

Gatfield, I.L. (1997). Biotechnological production of flavour-active lactones. In: Berger, R.G., et al. Biotechnology of Aroma Compounds. Advances in Biochemical Engineering/Biotechnology, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102067

Download citation

  • DOI: https://doi.org/10.1007/BFb0102067

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61482-1

  • Online ISBN: 978-3-540-68602-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics